Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230126, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913056

RESUMO

Dispersal among local communities is fundamental to the metacommunity concept but is only important to the metacommunity structure if dispersal causes distortions of species abundances away from what local ecological conditions favour. We know from much previous work that dispersal can cause such abundance distortions. However, almost all previous theoretical studies have only considered one species alone or two interacting species (e.g. competitors or predator and prey). Moreover, a systematic analysis is needed of whether different dispersal strategies (e.g. passive dispersal versus demographic habitat selection) result in different abundance distortion patterns, how these distortion patterns change with local food web structure, and how the dispersal propensities of the interacting species might evolve in response to one another. In this article, we show using computer simulations and analytical models that abundance distortions occur in simple food webs with both passive dispersal and habitat selection, but habitat selection causes larger distortions. Additionally, patterns in the evolution of dispersal propensity in interacting species are very different for these two dispersal strategies. This study identifies that the dispersal strategies employed by interacting species critically shape how dispersal will influence metacommunity structure. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Evolução Biológica , Ecossistema , Cadeia Alimentar , Modelos Biológicos , Distribuição Animal , Animais , Simulação por Computador , Biota , Dinâmica Populacional
2.
Am Nat ; 200(5): 675-690, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260850

RESUMO

AbstractSince its inception, attempts have been made to improve ideal free distribution (IFD) theory to make it better fit real-world data. Spatial contagion is a newer ecological concept that suggests that the perceived quality of a patch can be affected by the quality of its neighbor patches. Here, we present a series of experiments testing for potential contagion effects, examining how contagion can interact with the IFD and determining whether spatial context affects assessment of habitat quality. First, we tested whether the presence of conspecific competitors negatively impacts oviposition habitat selection by female mosquitoes (Culex restuans). We then used a more complex spatial landscape to determine whether competition can create a spatial contagion effect. Finally, we examined whether the density of conspecifics can adjust the contagion effect of nutrient availability. While females avoided patches containing conspecifics, there was no effect of competition/density on neighboring patches. Additionally, we found that resource availability was a significant predictor of where egg rafts were laid, but resource availability did not have a contagion effect. These results provide further support for the utility of the IFD, as individuals were able to accurately assess patch-level habitat quality.


Assuntos
Culex , Culicidae , Animais , Feminino , Humanos , Ecossistema , Oviposição
3.
Ecology ; 103(9): e3766, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35610971

RESUMO

Diversity in habitat patches is partly driven by variation in patch size, which affects extinction, and isolation, which affects immigration. Patch size also affects immigration as a component of patch quality. In wetland ecosystems, where variation in patch size and interpatch distance is ubiquitous, relationships between size and isolation may involve trade-offs. We assayed treefrog oviposition at three patch sizes in arrays of two types, one where size increased with distance from forest (dispersed) and one with all patches equidistant from forest (equidistant), testing directly for an interaction between patch size and distance, which was highly significant. Medium patches in dispersed arrays received more eggs than those in equidistant arrays as use of typically preferred larger patches was reduced in dispersed arrays. Our results demonstrated a habitat selection trade-off between preferred large and less-preferred medium patches across small-scale variation in isolation. Such patch size/isolation relationships are critical to community assembly and to understanding how diversity is maintained within a metapopulation and metacommunity framework, especially as wetland habitat becomes increasingly rare and fragmented. These results bring lessons of island biogeography, writ large, to bear on questions at small scales where ecologists often work and where habitat restoration is most often focused.


Assuntos
Ecossistema , Florestas , Animais , Anuros , Feminino , Dinâmica Populacional , Áreas Alagadas
4.
Ecology ; 103(4): e3625, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34970743

RESUMO

Avoiding detection is perhaps the ultimate weapon for both predators and prey. Chemosensory detection of predators via waterborne or airborne cues (predator-released kairomones) is a key prey adaptation in aquatic ecosystems. Pirate perch, Aphredoderus sayanus, a largely insectivorous mesopredatory fish, are considered to be chemically camouflaged because they are unavoided by all colonizing organisms tested, including treefrogs and aquatic insects, despite stronger predatory effects on target taxa than several avoided fish. To address the mechanism behind camouflage we used aquatic insect colonization as a bioassay to test (1) whether increasing pirate perch density/biomass leads to increased avoidance, and (2) whether pirate perch mask heterospecific fish kairomones. Insect abundances, species richness, and community structure showed no response to pirate perch density. Last, pirate perch did not mask the kairomones of heterospecific predatory fish. Results support the idea that fish kairomones are species-specific, and chemical camouflage is driven by a unique chemical signature that is either undetectable or has no negative associations for colonists.


Assuntos
Sinais (Psicologia) , Percas , Animais , Ecossistema , Comportamento Predatório/fisiologia , Especificidade da Espécie
5.
Ecol Evol ; 11(23): 16817-16834, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938475

RESUMO

Patch size is one of the most important factors affecting the distribution and abundance of species, and recent research has shown that patch size is an important niche dimension affecting community structure in aquatic insects. Building on this result, we examined the impact of patch size in conjunction with presence of larval anurans on colonization by aquatic insects. Hyla chrysoscelis (Cope's gray treefrog) larvae are abundant and early colonists in fishless lentic habitats, and these larvae can fill multiple ecological roles. By establishing larvae in mesocosms prior to colonization, we were able to assess whether H. chrysoscelis larvae have priority effects on aquatic insect assemblages. We conducted a series of three experiments in naturally colonized experimental landscapes to test whether (1) H. chrysoscelis larval density affects insect colonization, (2) variation in patch size affects insect colonization, and (3) the presence and larval density of H. chrysoscelis shift colonization of insects between patches of different size. Larval density independently had almost no effect on colonization, while patch size had species-specific effects consistent with prior work. When larvae and patch size were tested in conjunction, patch size had numerous, often strong, species-specific effects on colonization; larval density had effects largely limited to the assemblages of colonizing beetles and water bugs, with few effects on individual species. Higher larval densities in large mesocosms shifted some insect colonization to smaller patches, resulting in higher beta diversity among small patches in proximity to high density large mesocosms. This indicates establishing H. chrysoscelis larvae prior to insect colonization can likely create priority effects that slightly shape insect communities. Our results support the importance of patch size in studying species abundances and distributions and also indicate that colonization order plays an important role in determining the communities found within habitat patches.

6.
Proc Biol Sci ; 288(1950): 20210558, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33975473

RESUMO

Predators affect prey through both consumptive and non-consumptive effects (NCEs), and prey typically face threats from multiple simultaneous predators. While different predators have a variety of NCEs on prey, little is known regarding effects of simultaneous multiple predators on demographic habitat selection. Demographic habitat selection is unique among NCEs, especially in discrete habitat patches; decisions directly affect both distribution and abundance of species across habitat patches, rather than simply abundance and performance within patches. Our goal was to determine strength of avoidance responses to multiple species/species combinations of predatory fish, and responses to predator richness. We assessed responses of ovipositing grey treefrogs (Hyla chrysoscelis) to three predatory fish species and substitutive combination of species. In single-species treatments, treefrogs avoided only one species, Notemigonus crysoleucas. All two-species combinations, and the three-species combination, were avoided, including the Fundulus chrysotus × Noturus phaeus combination, of which neither were avoided alone. This suggests emergent properties of multiple predators, with potential interactive effects among cues themselves or in the perception of cues by treefrogs. Our results indicate effects of multiple predators are not predictable based on individual effects, and illustrate the importance and complexity of effects of demographic habitat selection on distribution and abundance.


Assuntos
Oviposição , Comportamento Predatório , Animais , Anuros , Ecossistema , Feminino , Peixes , Cadeia Alimentar
7.
Ecol Evol ; 11(4): 1902-1917, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33614012

RESUMO

Predators are a particularly critical component of habitat quality, as they affect survival, morphology, behavior, population size, and community structure through both consumptive and non-consumptive effects. Non-consumptive effects can often exceed consumptive effects, but their relative importance is undetermined in many systems. Our objective was to determine the consumptive and non-consumptive effects of a predaceous aquatic insect, Notonecta irrorata, on colonizing aquatic beetles. We tested how N. irrorata affected survival and habitat selection of colonizing aquatic beetles, how beetle traits contributed to their vulnerability to predation by N. irrorata, and how combined consumptive and non-consumptive effects affected populations and community structure. Predation vulnerabilities ranged from 0% to 95% mortality, with size, swimming, and exoskeleton traits generating species-specific vulnerabilities. Habitat selection ranged from predator avoidance to preferentially colonizing predator patches. Attraction of Dytiscidae to N. irrorata may be a natural ecological trap given similar cues produced by these taxa. Hence, species-specific habitat selection by prey can be either predator-avoidance responses that reduce consumptive effects, or responses that magnify predator effects. Notonecta irrorata had both strong consumptive and non-consumptive effects on populations and communities, while combined effects predicted even more distinct communities and populations across patches with or without predators. Our results illustrate that an aquatic invertebrate predator can have functionally unique consumptive effects on prey, attracting and repelling prey, while prey have functionally unique responses to predators. Determining species-specific consumptive and non-consumptive effects is important to understand patterns of species diversity across landscapes.

8.
J Exp Zool A Ecol Integr Physiol ; 335(3): 329-338, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33465297

RESUMO

Polyphenisms, where two or more alternative, environmentally-cued phenotypes are produced from the same genotype, arise through variability in the developmental rate and timing of phenotypic traits. Many of these developmental processes are controlled or influenced by endogenous hormones, such as glucocorticoids, which are known to regulate a wide array of vertebrate ontogenetic transitions. Using the mole salamander, Ambystoma talpoideum, as a model, we investigated the role of glucocorticoids in regulating facultative paedomorphosis, an ontogenetic polyphenism where individuals may delay metamorphosis into terrestrial adults. Instead, individuals reproduce as aquatic paedomorphic adults. Paedomorphosis often occurs when aquatic conditions remain favorable, while metamorphosis typically occurs in response to deteriorating or "stressful" aquatic conditions. Since glucocorticoids are central to the vertebrate stress response and are known to play a central role in regulating obligate metamorphosis in amphibians, we hypothesized that they are key regulators of paedomorphic life history strategies. To test this hypothesis, we compared development of larvae in outdoor mesocosms exposed to Low, Medium, and High exogenous doses of corticosterone (CORT). Results revealed that body size and the proportion of paedomorphs were both inversely proportional to exogenous CORT doses and whole-body CORT content. Consistent with known effects of CORT on obligate metamorphosis in amphibians, our results link glucocorticoids to ontogenetic transitions in facultatively paedomorphic salamanders. We discuss our results in the context of theoretical models and the suite of environmental cues known to influence facultative paedomorphosis.


Assuntos
Corticosterona/farmacologia , Urodelos/fisiologia , Animais , Tamanho Corporal , Corticosterona/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Estágios do Ciclo de Vida , Masculino , Urodelos/genética
9.
Ecology ; 102(1): e03209, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32981052

RESUMO

Abiotic conditions are important considerations in the species sorting process, which ultimately determines the distribution and abundance of species. Freshwater ecosystems will be impacted by ongoing temperature rise and other anthropogenically induced changes, such as nutrient enrichment and eutrophication. Changing characteristics of freshwater habitats will likely impact organisms in numerous ways, including through effects on colonization dynamics. Species are expected to colonize habitat patches where fitness will be the highest for themselves and their offspring, and how habitat selection interacts with changing environments remains an important question. We conducted a warming experiment to test the habitat selection preferences of aquatic beetles and hemipterans between habitat patches (mesocosms) of varying temperatures (via heaters), nutrient addition, and their interaction. Overall, insect abundance and richness were higher in unheated patches, with taxon-specific variation in response to heating. Although nutrients had limited effects on environmental conditions in mesocosms, their addition had no significant effects on insects. Insect assemblages had unique structures across heating treatments, with lower beta diversity and higher effective numbers of species in the warmest mesocosms. Our data support the importance of spatial variation in abiotic factors during the habitat selection process, and in determining species distributions and abundances as shallow lentic ecosystems are impacted by rising global temperatures.


Assuntos
Besouros , Ecossistema , Animais , Insetos , Nutrientes , Temperatura
10.
Ecol Evol ; 10(21): 12170-12182, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209279

RESUMO

Structure of natural communities is shaped by both abiotic characteristics and the ongoing processes of community assembly. Important to this process are the habitat selection behaviors and subsequent survival of colonists, both in the context of temporal changes in the abiotic characteristics and priority effects driven by earlier colonists. Aquatic beetles are prevalent in temporary freshwater systems, form speciose assemblages, and are often early colonists of temporary ponds. While beetles have the potential to influence community structure through post-colonization interactions (predation and competition), our goal was to determine whether the presence of beetle assemblages (versus patches without beetles) influences the colonization and oviposition of a diverse group of animals in a naturally colonized experimental landscape. We established mesocosms that either contained existing beetle assemblages or contained no beetles and assessed abundances of subsequent colonists. Treefrogs, Hyla chrysoscelis, and mosquitoes, Culex restuans, both deposited fewer eggs in patches containing beetle assemblages, while two beetles, Copelatus glyphicus and Paracymus, colonized those patches at lower rates. One beetle, Helophorus linearis, colonized patches containing beetle assemblages at higher rates, while two beetles, Berosus infuscatus and Tropisternus lateralis, exhibited no colonization differences between treatments. Overall, there were no differences in the assemblage structure or richness of beetles that colonized patches. Our results illustrate the importance of species-specific habitat selection behavior in determining the species composition of habitat patches, while emphasizing the role of priority effects in influencing patterns of community assembly. Habitat selection in response to abiotic and biotic characteristics of habitat patches can potentially create greater spatiotemporal niche separation among the numerous, often closely related species (phylogenetically and trophically), that can be simultaneously found in similar patches across landscapes.

11.
Am Nat ; 194(6): 776-793, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31738108

RESUMO

Positive correlation of species richness with area is ubiquitous in nature, but the processes driving that relationship, as well as those constraining typical patterns, remain elusive. Patch size variation is pervasive in natural systems, and it is thus critical to understand how variation in patch size, as well as its potential interaction with factors like predation and isolation, affects community assembly. We crossed patch quality (fish presence/absence) with patch size to the examine effects of quality, size, and their interaction on colonization by aquatic insects. Overall, beetles favored small, fishless patches, but individual species sorted across patch size while hemipterans aggregated into large, fishless patches, producing sorting between Coleoptera and Hemiptera. Both patch size and predation risk generated significant variation in community structure and diversity. Patch size preferences for the 14 most abundant species and preeminence of species turnover in patterns of ß-diversity reinforce patch size as a driver of regional species sorting via habitat selection. Species sorting at the immigration stage plays a critical role in community assembly. Identifying patch size as a component of perceived quality establishes patch size as a critical niche dimension and alters our view of its role in assembly dynamics and the maintenance of local and regional diversity.


Assuntos
Comportamento Animal , Besouros/fisiologia , Ecossistema , Hemípteros/fisiologia , Distribuição Animal , Animais , Biodiversidade , Cyprinidae , Mississippi , Perciformes , Lagoas , Comportamento Predatório
12.
Ecology ; 99(3): 661-669, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315522

RESUMO

Two of the most important factors determining community structure and diversity within and among habitat patches are patch size and patch quality. Despite the importance of patch size in existing paradigms in island biogeography, metapopulation biology, landscape ecology, and metacommunity ecology, and growing conservation concerns with habitat fragmentation, there has been little investigation into how patch size interacts with patch quality. We crossed three levels of patch size (1.13 m2 , 2.54 m2 and 5.73 m2 ) with two levels of patch quality (fish presence/absence, green sunfish [Lepomis cyanellus] and golden shiners [Notemigonus crysoleucus]) in six replicate experimental landscapes (3 × 2 × 6 = 36 patches). Both fish predators have been previously shown to elicit avoidance in ovipositing treefrogs. We examined how patch size and patch quality, as well as the interaction between size and quality, affected female oviposition preference and male calling site choice in a natural population of treefrogs (Hyla chrysoscelis). Females almost exclusively oviposited in the largest fishless patches, indicating that females use both risk, in the form of fish predators, and size itself, as components of patch quality. Females routinely use much smaller natural and experimental patches, suggesting that the responses to patch size are highly context dependent. Responses to fish were unaffected by patch size. Male responses largely mimicked those of females, but did not drive female oviposition. We suggest that patch size itself functions as another aspect of patch quality for H. chrysoscelis, and serves as another niche dimension across which species may behaviorally sort in natural systems. Because of strong, shared avoidance of fish (as well as other predators), among many colonizing taxa, patch size may be a critical factor in species sorting and processes of community assembly in freshwater habitats, allowing species to behaviorally segregate along gradients of patch size in fishless ponds. Conversely, lack of variation in patch size may concentrate colonization activity, leading to intensification of species interactions and/or increased use of lesser quality patches.


Assuntos
Anuros , Comportamento Predatório , Animais , Ecossistema , Feminino , Peixes , Masculino , Dinâmica Populacional
13.
Oecologia ; 186(2): 415-424, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197041

RESUMO

The perceived quality of habitat patches in complex landscapes is highly context dependent. Characteristics of neighboring patches in such complex landscapes can influence perceived habitat quality, altering colonization dynamics and community structure. Spatial contagion of predation risk across patches has been observed over smaller spatial scales in aquatic systems. Naturally colonizing aquatic beetles were used to examine the spatial dynamics of risk contagion by quantifying the size of predator shadows around fish patches across spatial scales potentially involving numerous patches in natural landscapes. These consisted of fish free, replicate experimental mesocosm arrays radiating from larger central mesocosms containing fish, and allowed examination of the effect of distance to fish on beetle abundance, rarified species richness, and variation in species responses. Overall, beetles avoided pools closer to fish, but species varied in colonization pattern, resulting in species-specific predator shadows and potential behavioral species sorting. The spatial and phylogenetic extent of contagion and other context-dependent effects has implications for the role of complex behavior in the dynamics of communities and metacommunities.


Assuntos
Besouros , Animais , Ecossistema , Peixes , Filogenia , Comportamento Predatório
14.
Ecology ; 98(8): 2201-2215, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28574151

RESUMO

Trophic interactions are critical determinants of community structure and ecosystem function. In freshwater habitats, top predators are traditionally viewed as drivers of ecosystem structure, shaping populations of consumers and primary producers. The temporary nature of small water bodies makes them dependent on colonization by many organisms, particularly insects that form highly diverse predator assemblages. We conducted mesocosm experiments with naturally colonizing populations of aquatic beetles to assess how prey (zooplankton) abundances influenced colonization and assemblages of natural populations of aquatic beetles. We experimentally demonstrate that zooplankton populations can be proximate regulators of predator populations and assemblages via prey-density-dependent predator recruitment. Our results provide support for the importance of prey populations in structuring predator populations and the role of habitat selection in structuring communities. We indicate that traditional views of predators as drivers of ecosystem structure in many systems may not provide a comprehensive picture, particularly in the context of highly disturbed or ephemeral habitats.


Assuntos
Besouros/fisiologia , Ecossistema , Zooplâncton/fisiologia , Animais , Cadeia Alimentar , Insetos , Comportamento Predatório
15.
Oecologia ; 184(2): 423-430, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28470466

RESUMO

Habitat permanence and threat of predation are primary drivers of community assembly and composition in lentic freshwater systems. Pond-breeding amphibians select oviposition sites to maximize fitness and minimize risks of predation and desiccation of their offspring, typically facing a trade-off between the two as predation risk often increases as desiccation risk decreases. To experimentally determine if Hyla chrysoscelis partition oviposition along gradients of relative desiccation risk and predation risk, we tested oviposition site preference in a natural population of treefrogs colonizing experimental ponds that varied in water depth and contained predatory larvae of two Ambystoma salamander species. Hyla chrysoscelis selected habitats with both lower predation risk, avoiding A. talpoideum over A. maculatum, and lower desiccation risk, selecting ponds with three times greater depth. We demonstrate that adult oviposition site choices simultaneously minimize relative predation risk and desiccation risk and that closely related salamander species produce functionally different responses among colonizing animals.


Assuntos
Anuros , Dessecação , Oviposição , Animais , Feminino , Lagoas , Comportamento Predatório
16.
J Anim Ecol ; 86(5): 1124-1135, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28542919

RESUMO

Habitat selection by colonizing organisms is an important factor in determining species abundance and community dynamics at multiple spatial scales. Many organisms select habitat patches based on intrinsic patch quality, but patches exist in complex landscapes linked by dispersal and colonization, forming metapopulations and metacommunities. Perceived patch quality can be influenced by neighbouring patches through spatial contagion, wherein perceived quality of one patch can extend beyond its borders and either increase or decrease the colonization of neighbouring patches and localities. These spatially explicit colonization dynamics can result in habitat compression, wherein more colonists occupy a patch or locality than in the absence of spatial context dependence. Previous work on contagion/compression focused primarily on the role of predators in driving colonization patterns. Our goal was to determine whether resource abundance can drive multi-scale colonization dynamics of aquatic beetles through the processes of contagion and compression in naturally colonized experimental pools. We established two levels (high/low quality) of within-patch resource abundances (leaf litter) using an experimental landscape of mesocosms, and assayed colonization by 35 species of aquatic beetles. Patches were arranged in localities (sets of two patches), which consisted of a combination of two patch-level resource levels in a 2 × 2 factorial design, allowing us to assay colonization at both locality and patch levels. We demonstrate that patterns of species abundance and richness of colonizing aquatic beetles are determined by patch quality and context-dependent processes at multiple spatial scales. Localities that consisted of at least one high-quality patch were colonized at equivalent rates that were higher than localities containing only low-quality patches, displaying regional reward contagion. In localities that consisted of one high- and one low-quality patch, reward contagion produced by higher leaf litter levels resulted in greater abundance of beetles in such localities, which then compressed into the highest quality patches. Our results provide further support for the critical roles of habitat selection and spatial context, particularly the quality of neighbouring habitat patches, in generating patterns of species abundances and community structure across landscapes.


Assuntos
Besouros , Meio Ambiente , Animais , Ecossistema , Folhas de Planta , Dinâmica Populacional , Recompensa
17.
Ecology ; 98(5): 1349-1360, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28247910

RESUMO

Polymorphisms play critical roles in allowing organisms to adapt to novel environments while enabling ecological speciation under divergent selection. Ambystoma maculatum, the spotted salamander, exhibits a unique polymorphism in the structure and appearance of its egg masses with two common morphs, white and clear. Amphibian egg jelly layers mediate interactions between embryos and the environment and are more responsive to ecological pressures of natural selection than other egg coat components. The A. maculatum egg mass polymorphism was hypothesized to be adaptive with regard to varying dissolved nutrient levels in ponds. We conducted two mesocosm experiments, collected field data, and constructed a population projection model to determine how dissolved nutrient levels affect embryonic and larval development and relate to the distribution of the morphs in natural ponds. We found that upon hatching there was an interaction between nutrient level and egg mass morph wherein individuals from white morphs were larger in low nutrient habitats. This interaction persisted throughout the larval stage, and along with the higher abundance of white morphs in ponds with low conductivity, we demonstrate that the white morph is advantageous in low nutrient environments. Our findings provide evidence for the role of environmental heterogeneity in enabling the persistence of a structural egg mass polymorphism, with maintenance occurring across multiple scales and persistence across its range. This indicates that polymorphisms can maximize performance in heterogeneous environments, while persisting over long timescales without leading to sympatric speciation.


Assuntos
Ambystoma/fisiologia , Animais , Ecossistema , Larva , Polimorfismo Genético , Seleção Genética
18.
Oecologia ; 183(3): 797-807, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28074270

RESUMO

Tree leaf litter inputs to freshwater systems are a major resource and primary drivers of ecosystem processes and structure. Spatial variation in tree species distributions and forest composition control litter inputs across landscapes, but inputs to individual lentic habitat patches are determined by adjacent plant communities. In small, ephemeral, fishless ponds, resource quality and abundance can be the most important factor affecting habitat selection preferences of colonizing animals. We used a landscape of experimental mesocosms to assess how natural populations of aquatic beetles respond over time to variation in tree leaf litter composition (pine or hardwood). Patches with faster-decomposing hardwood leaf litter were initially colonized at higher rates than slower-decomposing pine pools by most species of Hydrophilidae, but this pattern reversed later in the experiment with higher colonization of pine pools by hydrophilids. Colonization did not differ between pine and hardwood for dytiscids and the small hydrophilid Paracymus, but there were distinct beetle assemblages between pine and hardwood patches both early and late in the experiment. Our data support the importance of patch quality and habitat selection as determinants of species abundances, richness, and community structure in freshwater aquatic systems, not only when new habitat patches are formed and initial conditions set, but as patches change due to interactions of processes such as decomposition with time.


Assuntos
Besouros , Árvores , Animais , Ecossistema , Pinus , Folhas de Planta/química
19.
Ecology ; 97(12): 3517-3529, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27912024

RESUMO

Predators play an extremely important role in natural communities. In freshwater systems, fish can dominate sorting both at the colonization and post-colonization stage. Specifically, for many colonizing species, fish can have non-lethal, direct effects that exceed the lethal direct effects of predation. Functionally diverse fish species with a range of predatory capabilities have previously been observed to elicit functionally equivalent responses on oviposition in tree frogs. We tested this hypothesis of functional equivalence of non-lethal effects for four predatory fish species, using naturally colonizing populations of aquatic beetles. Among taxa other than mosquitoes, and with the exception of the chemically camouflaged pirate perch, Aphredoderus sayanus, we provide the first evidence of variation in colonization or oviposition responses to different fish species. Focusing on total abundance, Fundulus chrysotus, a gape-limited, surface-feeding fish, elicited unique responses among colonizing Hydrophilidae, with the exception of the smallest and most abundant taxa, Paracymus, while Dytiscidae responded similarly to all avoided fish. Neither family responded to A. sayanus. Analysis of species richness and multivariate characterization of the beetle assemblages for the four fish species and controls revealed additional variation among the three avoided species and confirmed that chemical camouflage in A. sayanus results in assemblages essentially identical to fishless controls. The origin of this variation in beetle responses to different fish is unknown, but may involve variation in cue sensitivity, different behavioral algorithms, or differential responses to species-specific fish cues. The identity of fish species occupying aquatic habitats is crucial to understanding community structure, as varying strengths of lethal and non-lethal effects, as well as their interaction, create complex landscapes of predator effects and challenge the notion of functional equivalence.


Assuntos
Comportamento Animal/fisiologia , Biodiversidade , Besouros/fisiologia , Peixes/fisiologia , Comunicação Animal , Animais , Dinâmica Populacional , Especificidade da Espécie
20.
Ecol Lett ; 19(2): 191-200, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26689170

RESUMO

Habitat selection, including oviposition site choice, is an important driver of community assembly in freshwater systems. Factors determining patch quality are assessed by many colonising organisms and affect colonisation rates, spatial distribution and community structure. For many species, the presence/absence of predators is the most important factor affecting female oviposition decisions. However, individual habitat patches exist in complex landscapes linked by processes of dispersal and colonisation, and spatial distribution of factors such as predators has potential effects beyond individual patches. Perceived patch quality and resulting colonisation rates depend both on risk conditions within a given patch and on spatial context. Here we experimentally confirm the role of one context-dependent processes, spatial contagion, functioning at the local scale, and provide the first example of another context-dependent process, habitat compression, functioning at the regional scale. Both processes affect colonisation rates and patterns of spatial distribution in naturally colonised experimental metacommunities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA