Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(9): ar120, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39046775

RESUMO

Endothelial cell behavior is regulated by subendothelial extracellular matrix (ECM). The ECM protein fibronectin (FN) is rare in healthy blood vessels but accumulates in disease accompanied by endothelial dysfunctions. Here, we report that excess assembly of FN disrupts key endothelial functions. We mimicked increased FN expression as in diseased stroma by providing exogenous FN basally in a Transwell insert and found dose-dependent upregulation of subendothelial FN matrix assembly. Taking advantage of discontinuous matrix assembly by endothelial cells, we show correlations between regional increases in FN matrix and disruptions in endothelial cell morphology, VE-cadherin junctions, and the cell cycle, all of which were not changed in FN-deficient regions of the monolayer. These changes affected endothelial barrier function with increased monolayer permeability exposing basal regions of high FN matrix and permitting FN-dependent adhesion of MDA-MB-231 tumor cells from the apical side of the monolayer. FN matrix accumulation was quick and increases in FN matrix preceded all other changes in the endothelium. Therefore, subendothelial accumulation of FN matrix is a cause, not an effect, of endothelial monolayer disorganization and leakiness. Regulating FN accumulation in the subendothelial space could be an important target for controlling progression of fibrosis and related diseases.


Assuntos
Caderinas , Adesão Celular , Células Endoteliais , Matriz Extracelular , Fibronectinas , Fibronectinas/metabolismo , Humanos , Matriz Extracelular/metabolismo , Células Endoteliais/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Linhagem Celular Tumoral , Antígenos CD/metabolismo , Ciclo Celular
2.
Exp Biol Med (Maywood) ; 247(13): 1093-1102, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35410521

RESUMO

Fibrosis is an accumulation of extracellular matrix (ECM) proteins and fibers in a disordered fashion, which compromises cell and tissue functions. High glucose-induced fibrosis, a major pathophysiological change of diabetic retinopathy (DR), severely affects vision by compromising the retinal vasculature and ultimately disrupting retinal tissue organization. The retina is a highly vascularized, stratified tissue with multiple cell types organized into distinct layers. Chronically high blood glucose stimulates certain retinal cells to increase production and assembly of ECM proteins resulting in excess ECM deposition primarily in the capillary walls on the basal side of the endothelium. This subendothelial fibrosis of the capillaries is the earliest histological change in the diabetic retina and has been linked to the vascular dysfunction that underlies DR. Proteins that are not normally abundant in the capillary basement membrane (BM) matrix, such as the ECM protein fibronectin, are assembled in significant quantities, disrupting the architecture of the BM and altering its properties. Cell culture models have identified multiple mechanisms through which elevated glucose can stimulate fibronectin matrix assembly, including intracellular signaling pathways, alternative splicing, and non-enzymatic glycation of the ECM. The fibrotic subendothelial matrix alters cell adhesion and supports further accumulation of other ECM proteins leading to disruption of endothelial cell-cell junctions. We review evidence supporting the notion that these molecular changes in the ECM contribute to the pathogenesis of DR, including vascular leakage, loss of endothelial cells and pericytes, changes in blood flow, and neovascularization. We propose that the accumulation of ECM, especially fibronectin matrix, first around the vasculature and later in extravascular locations, plays a critical role in DR and vision loss. Strategies for DR prevention and treatment should consider the ECM a potential therapeutic target.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Diabetes Mellitus/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Fibrose , Glucose/metabolismo , Humanos
3.
NPJ Parkinsons Dis ; 4: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038956

RESUMO

Loss of cardiac postganglionic sympathetic innervation is a characteristic pathology of Parkinson's disease (PD). It progresses over time independently of motor symptoms and is not responsive to typical anti-parkinsonian therapies. Cardiac sympathetic neurodegeneration can be mimicked in animals using systemic dosing of the neurotoxin 6-hydroxydopamine (6-OHDA). As in PD, 6-OHDA-induced neuronal loss is associated with increased inflammation and oxidative stress. To assess the feasibility of detecting changes over time in cardiac catecholaminergic innervation, inflammation, and oxidative stress, myocardial positron emission tomography with the radioligands [11C]meta-hydroxyephedrine (MHED), [11C]PBR28 (PBR28), and [61Cu]diacetyl-bis(N(4))-methylthiosemicarbazone (ATSM) was performed in 6-OHDA-intoxicated adult, male rhesus macaques (n = 10; 50 mg/kg i.v.). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone, which is known to have anti-inflammatory and anti-oxidative stress properties, was administered to five animals (5 mg/kg, PO); the other five were placebo-treated. One week after 6-OHDA, cardiac MHED uptake was significantly reduced in both groups (placebo, 86% decrease; pioglitazone, 82%); PBR28 and ATSM uptake increased in both groups but were attenuated in pioglitazone-treated animals (PBR28 Treatment × Level ANOVA p < 0.002; ATSM Mann-Whitney p = 0.032). At 12 weeks, partial recovery of MHED uptake was significantly greater in the pioglitazone-treated group, dependent on left ventricle circumferential region and axial level (Treatment × Region × Level ANOVA p = 0.034); 12-week MHED uptake significantly correlated with tyrosine hydroxylase immunoreactivity across cardiac anatomy (p < 0.000002). PBR28 and ATSM uptake returned to baseline levels by 12 weeks. These radioligands thus hold potential as in vivo biomarkers of mechanisms of cardiac neurodegeneration and neuroprotection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA