Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(21)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35105827

RESUMO

Atomic force microscopy (AFM) nanoxerography was successfully used to direct the assembly of colloidal nanodiamonds (NDs) containing nitrogen-vacancy (NV) centres on electrostatically patterned surfaces. This study reveals that the number of deposited NDs can be controlled by tuning the surface potentials of positively charged dots on a negatively charged background written by AFM in a thin PMMA electret film, yielding assemblies down to a unique single-photon emitter with very good selectivity. The mechanisms of the ND directed assembly are attested by numerical simulations. This robust deterministic nano-positioning of quantum emitters thus offers great opportunities for ultimate applications in nanophotonics for quantum technologies.

2.
Nanoscale ; 10(24): 11679, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29888769

RESUMO

Correction for 'Towards wireless highly sensitive capacitive strain sensors based on gold colloidal nanoparticles' by H. Nesser et al., Nanoscale, 2018, DOI: 10.1039/c7nr09685b.

3.
Nanoscale ; 10(22): 10479-10487, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29799037

RESUMO

We designed, produced and characterized new capacitive strain sensors based on colloidal gold nanoparticles. The active area of these sensors, made up of a 1 mm2 close-packed assembly of gold nanoparticles between interdigitated electrodes, was designed to achieve measurable capacitance (>∼1 pF) and overcome parasitic capacitances. Electro-mechanical experiments revealed that the sensitivity of such capacitive sensors increases in relation to the size of the nanoparticles. In the case of 14 nm gold NPs, such sensors present a relative capacitance variation of -5.2% for a strain of 1.5%, which is more than 5 times higher than that observed for conventional capacitive strain gauges. The existence of two domains (pure capacitive domain and mixed capacitive-resistance domain) as a function of the frequency measurement allows for the adaptation of sensitivity of these capacitive sensors. A simple low-cost circuit based on a microcontroller board was finally developed to detect the capacitance variations of such NP based strain sensors. This low-cost equipment paves the way for the development of an entirely wireless application set-up.

4.
Nanoscale ; 8(36): 16162-16167, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27714145

RESUMO

We report on photo-current generation in freestanding monolayered gold nanoparticle membranes excited by using a focused laser beam. The absence of a substrate leads to a 50% increase of the photo-current at the surface plasmon resonance. This current is attributed to a combination of trap state dynamics and bolometric effects in a nanocomposite medium yielding a temperature rise of 40 K.

5.
Nanoscale ; 8(22): 11363-70, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27194578

RESUMO

The electro-mechanical sensing properties of freestanding monolayered membranes of dodecanethiol coated 7 nm gold nanoparticles (NPs) are investigated using AFM force spectroscopy and conductive AFM simultaneously. The electrical resistance of the NP membranes increases sensitively with the point-load force applied in the center of the membranes using an AFM tip. Numerical simulations of electronic conduction in a hexagonally close-packed two-dimensional (2D) array of NPs under point load-deformation are carried out on the basis of electronic transport measurements at low temperatures and strain modeling of the NP membranes by finite element analysis. These simulations, supporting AFM-based electro-mechanical measurements, attribute the high strain sensitivity of the monolayered NP membranes to the exponential dependence of the tunnel electron transport in 2D NP arrays on the strain-induced length variation of the interparticle junctions. This work thus evidences a new class of highly sensitive nano-electro-mechanical systems based on freestanding monolayered gold NP membranes.

6.
Nanotechnology ; 26(33): 335702, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26225820

RESUMO

Stripe-like compact assemblies of tin-doped indium oxide (ITO) colloidal nanocrystals (NCs) are fabricated by stop-and-go convective self-assembly (CSA). Systematic evaluation of the electron transport mechanisms in these systems is carried out by varying the length of carboxylate ligands protecting the NCs: butanoate (C4), octanoate (C8) and oleate (C18). The interparticle edge-to-edge distance L0, along with a number of carbon atoms in the alkyl chain of the coating ligand, are deduced from small-angle x-ray scattering (SAXS) measurements and exhibit a linear relationship with a slope of 0.11 nm per carbon pair unit. Temperature-dependent resistance characteristics are analyzed using several electron transport models: Efros-Shklovskii variable range hopping (ES-VRH), inelastic cotunneling (IC), regular island array and percolation. The analysis indicated that the first two models (ES-VRH and IC) fail to explain the observed behavior, and that only simple activated transport takes place in these systems under the experimental conditions studied (T = 300 K to 77 K). Related transport parameters were then extracted using the regular island array and percolation models. The effective tunneling decay constant ßeff of the ligands and the Coulomb charging energy EC are found to be around 5.5 nm(-1) and 25 meV, respectively, irrespective of ligand lengths. The theoretical tunneling decay constant ß calculated using the percolation model is in the range 9 nm(-1). Electromechanical tests on the ITO nanoparticle assemblies indicate that their sensitivities are as high as ∼30 and remain the same regardless of ligand lengths, which is in agreement with the constant effective ßeff extracted from regular island array and percolation models.

7.
Nanoscale ; 7(29): 12631-40, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26150112

RESUMO

Bottom-up fabrication of a flexible multi-touch panel prototype based on transparent colloidal indium tin oxide (ITO) nanocrystal (NC) films is presented. A series of 7% Sn(4+) doped ITO NCs protected by oleate, octanoate and butanoate ligands are synthesized and characterized by a battery of techniques including, high resolution transmission electron microscopy, X-ray diffraction, (1)H, (13)C and (119)Sn nuclear magnetic resonance spectroscopy, and the related diffusion ordered spectroscopy. Electrical resistivities of transparent films of these NCs assembled on flexible polyethylene terephthalate substrates by convective self-assembly from their suspension in toluene decrease with the ligand length, from 220 × 10(3) for oleate ITO to 13 × 10(3)Ω cm for butanoate ITO NC films. A highly transparent, flexible touch panel based on a matrix of strain gauges derived from the least resistive film of 17 nm butanoate ITO NCs sensitively detects the lateral position (x, y) of the touch as well as its intensity over the z-axis. Being compatible with a stylus or bare/gloved finger, a larger version of this module may be readily implemented in upcoming flexible screens, enabling navigation capabilities over all three axes, a feature highly desired by the display industry.

8.
Nanotechnology ; 25(34): 345302, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25091823

RESUMO

This work demonstrates the excellent capability of the recently developed electrical nanoimprint lithography (e-NIL) technique for quick, high-throughput production of well-defined colloid assemblies on surfaces. This is shown by fabricating micron-sized photoluminescent quick response (QR) codes based on the electrostatic directed trapping (so called nanoxerography process) of 28 nm colloidal lanthanide-doped upconverting NaYF4 nanocrystals. Influencing experimental parameters have been optimized and the contribution of triboelectrification in e-NIL was evidenced. Under the chosen conditions, more than 300 000 nanocrystal-based QR codes were fabricated on a 4 inch silicon wafer, in less than 15 min. These microtags were then transferred to transparent flexible films, to be easily integrated onto desired products. Invisible to the naked eye, they can be decoded and authenticated using an optical microscopy image of their specific photoluminescence mapping. Beyond this very promising application for product tracking and the anti-counterfeiting strategies, e-NIL nanoxerography, potentially applicable to any types of charged and/or polarizable colloids and pattern geometries opens up tremendous opportunities for industrial scale production of various other kinds of colloid-based devices and sensors.

9.
Nanotechnology ; 23(25): 255302, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22652623

RESUMO

We present a novel technique called electrical nano-imprint lithography (e-NIL) for topographic and electrostatic patterning of thermoplastic electret films at the nanometer scale. This versatile parallel process consists of simultaneously transferring micro- or nano-patterns from a conductive mold into a thermoplastic electret film and injecting positive or negative electrical charges into the bottom of the imprinted patterns. As proof of concept, we used this e-NIL process to fabricate arrays of 5 µm and 300 nm wide topographic charged patterns into polymethylmethacrylate (PMMA) thin films coated on silicon wafers. We demonstrated that these patterned PMMA films, exhibiting thousands of topographically confined and electrostatically active sites, can be used for high-throughput directed assembly of colloidal nanoparticles.

10.
Nanotechnology ; 22(39): 395102, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21891839

RESUMO

Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.


Assuntos
Aspergillus fumigatus/ultraestrutura , Dimetilpolisiloxanos/química , Microscopia de Força Atômica/métodos , Saccharomyces cerevisiae/ultraestrutura , Esporos Fúngicos/ultraestrutura , Células Imobilizadas/ultraestrutura
11.
Nanotechnology ; 22(32): 325603, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21772072

RESUMO

Directed assembly of 10 nm dodecanethiol stabilized silver nanoparticles in hexane and 14 nm citrate stabilized gold nanoparticles in ethanol was performed by AFM nanoxerography onto charge patterns of both polarities written into poly(methylmethacrylate) thin films. The quasi-neutral silver nanoparticles were grafted on both positive and negative charge patterns while the negatively charged gold nanoparticles were selectively deposited on positive charge patterns only. Numerical simulations were conducted to quantify the magnitude, direction and spatial range of the electrophoretic and dielectrophoretic forces exerted by the charge patterns on these two types of nanoparticles in suspension taken as models. The simulations indicate that the directed assembly of silver nanoparticles on both charge patterns is due to the predominant dielectrophoretic forces, while the selective assembly of gold nanoparticles only on positive charge patterns is due to the predominant electrophoretic forces. The study also suggests that the minimum surface potential of charge patterns required for obtaining effective nanoparticle assembly depends strongly on the charge and polarizability of the nanoparticles and also on the nature of the dispersing solvent. Attractive electrostatic forces of about 2 × 10( - 2) pN in magnitude just above the charged surface appear to be sufficient to trap silver nanoparticles in hexane onto charge patterns and the value is about 2 pN for gold nanoparticles in ethanol, under the present experimental conditions. The numerical simulations used in this work to quantify the electrostatic forces operating in the directed assembly of nanoparticles from suspensions onto charge patterns can easily be extended to any kind of colloid and serve as an effective tool for a better comprehension and prediction of liquid-phase nanoxerography processes.

12.
Nanotechnology ; 21(22): 225706, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20453285

RESUMO

Electrostatic nanopatterning of electret thin films by atomic force microscopy (AFM) has emerged as an alternative efficient tool for the directed assembly of nano-objects on surfaces. High-resolution charge imaging of such charge patterns can be performed by AFM-based Kelvin force microscopy (KFM). Nevertheless, quantitative analysis of KFM surface potential mappings is not trivial because of side-capacitance effects induced by the tip cone and the cantilever of the scanning probe. In this paper, we developed numerical simulations of KFM measurements taking into account these artifacts, so as to estimate the actual surface charge density of square charge patterns (nominal sizes ranging from 100 nm to 10 microm) written by AFM into polymethylmethacrylate (PMMA) thin films. This work revealed that, under our conditions, such charge patterns exhibit a surface charge density between 1.5 x 10(-3) and 3.8 x 10(-3) C m(-2), depending on the assumed depth of injected charges. These results are crucial to quantify the actual electric field generated by such charge patterns and thus the electrostatic forces responsible for the directed assembly of nano-objects onto these electrostatic traps.

13.
Langmuir ; 26(7): 4631-4, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20232832

RESUMO

Close-packed pyramidal assemblies of 100 nm latex nanoparticles were made by convective/capillary deposition on hydrophilic patterns created by oxidation lithography using atomic force microscopy (AFM). We demonstrated that the substrate temperature during convective/capillary assembly is a key experimental parameter in finely tuning the geometry of these pyramids and thus the total number of nanoparticles forming each 3D assembly. The volume and shape of these nanoparticle assemblies are discussed and compared to simulations.

14.
Nanotechnology ; 20(35): 355303, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19671965

RESUMO

In this paper, we report on a process to prepare gold nanoparticle stripes on SiO(2) by convective/capillary assembly without any patterning of the substrate. Electrical devices were then fabricated using stencil lithography in order to avoid any contamination. I(V) measurements at room temperature show that these stripes have an ohmic behavior between +/- 0.5 V with a resistivity ranging from one to two orders higher than the gold bulk value. Furthermore, I(V) and I(t) measurements reveal current fluctuations that were interpreted in terms of charging and discharging of nanoparticle islands leading to a very large electrostatic perturbation of current conduction paths. Unconventional relative amplitudes of up to 99% RTS fluctuations were observed.

15.
Langmuir ; 24(23): 13254-7, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18986188

RESUMO

We combine convective/capillary deposition and oxidation lithography by atomic force microscopy to direct the close-packed assembly of colloids on SiOx patterns fabricated on silicon substrates previously functionalized with a hydrophobic monolayer of octadecyltrimethoxysilane. The efficiency of this original generic method, which is well adapted to integrate colloids into silicon devices, is demonstrated for 100 nm colloidal latex nanoparticles and Escherichia coli bacteria in aqueous suspensions. A three-step mechanism involving convective flow and capillary forces appears to be responsible for these close-packed assemblies of colloids onto SiOx patterns.


Assuntos
Coloides/química , Escherichia coli/química , Microscopia de Força Atômica/métodos , Nanopartículas/química , Oxirredução , Compostos de Silício/química , Propriedades de Superfície , Suspensões/química
16.
Nanotechnology ; 19(13): 135301, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19636140

RESUMO

Electrostatic nanopatterning of poly(methylmethacrylate) (PMMA) thin films by atomic force microscopy (AFM) charge writing was investigated using Kelvin force microscopy (KFM). The lateral size of the electrostatic patterns and the amount of injected charges are closely correlated and can be controlled by the height of the voltage pulses applied to the AFM tip and the tip-sample separation during the writing process. Charge retention measurements show that PMMA has excellent charge storage properties in air under relative humidities from 1% to 60% and withstands immersion in ultra-pure water. This study thus reveals that PMMA is a very promising electret to create efficient electrostatic nanopatterns for directed self-assembly of nanoscale objects, including the broad range of colloidal particles or molecules in aqueous solutions.

17.
Ultramicroscopy ; 107(10-11): 985-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17573193

RESUMO

We present a fabrication process of cobalt nanoelectrodes compatible with spin-dependent transport measurements through a few or a single nano-object. It consists in etching a cobalt thin layer into pairs of planar nanoelectrodes separated by a nanometric gap using a negative Poly-MethylMethAcrylate (PMMA) mask patterned by high resolution electron beam lithography (HREBL). The irradiation parameters of 200keV HREBL on PMMA have been investigated using atomic force microscopy (AFM) to define accurately the PMMA transformation from positive to negative tone. The influence of the electron dose and the designed gap on the final gap between electrodes is presented. This complete study proves that PMMA can be used as a HREBL negative resist to fabricate nanoelectrodes separated by a controlled and reproducible gap ranging from 5nm to several tens of nanometers.

18.
Ultramicroscopy ; 107(10-11): 980-4, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17573194

RESUMO

The use of nano-objects to make the active part of reproducible nanodevices requires their controlled assembling on specific areas of substrates. In this work, we propose to use van der Waals interactions to assemble selectively gold particles covered by alkyl-thiol ligands on hydrophobic OctadecylTriMethoxySilane (OTMS) patterns defined on SiO(2)/Si substrates by a process combining nano-imprint lithography (NIL) or high resolution electron beam lithography (HREBL) and atmospheric chemical vapor deposition (CVD) of silane. A study by atomic force microscopy (AFM) reveals that homogeneous patterns of OTMS self-assembled monolayers, extending on several square millimeters, have been made. These OTMS patterns, with a lateral dimension ranging from 2mum down to 50nm, can be located at a precise place of a nanodevice, for example, between nanoelectrodes. Preliminary results of selective nanoparticle deposition on these chemical patterns are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA