Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 235: 113759, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280240

RESUMO

Polysaccharides, with the abundant availability, biodegradability, and inherent safety, offer a vast array of promising applications. Leveraging the remarkable attributes of polysaccharides, biomimetic and multifunctional hydrogels have emerged as a compelling avenue for efficacious wound dressing. The gels emulate the innate extracellular biomatrix as well as foster cellular proliferation. The distinctive structural compositions and profusion of functional groups within polysaccharides confer excellent physical/chemical traits as well as distinct restorative involvements. Gels crafted from polysaccharide matrixes serve as a robust defense against bacterial threats, effectively shielding wounds from harm. This comprehensive review delves into wound physiology, accentuating the significance of numerous polysaccharide-based gels in the wound healing context. The discourse encompasses an exploration of polysaccharide hydrogels tailored for diverse wound types, along with an examination of various therapeutic agents encapsulated within hydrogels to facilitate wound repair, incorporating recent patent developments. Within the scope of this manuscript, the perspective of these captivating gels for promoting optimal healing of wounds is vividly depicted. Nevertheless, the pursuit of knowledge remains ongoing, as further research is warranted to bioengineer progressive polysaccharide gels imbued with adaptable features. Such endeavors hold the promise of unlocking substantial potential within the realm of wound healing, propelling us toward multifaceted and sophisticated solutions.


Assuntos
Polissacarídeos , Cicatrização , Polissacarídeos/farmacologia , Polissacarídeos/química , Hidrogéis/farmacologia , Hidrogéis/química , Proliferação de Células , Biomimética , Antibacterianos/farmacologia
2.
Int J Nanomedicine ; 18: 5607-5623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37814664

RESUMO

Due to their non-toxic function in biological systems, Iron oxide NPs (IO-NPs) are very attractive in biomedical applications. The magnetic properties of IO-NPs enable a variety of biomedical applications. We evaluated the usage of IO-NPs for anticancer effects. This paper lists the applications of IO-NPs in general and the clinical targeting of IO-NPs. The application of IONPs along with photothermal therapy (PTT), photodynamic therapy (PDT), and magnetic hyperthermia therapy (MHT) is highlighted in this review's explanation for cancer treatment strategies. The review's study shows that IO-NPs play a beneficial role in biological activity because of their biocompatibility, biodegradability, simplicity of production, and hybrid NPs forms with IO-NPs. In this review, we have briefly discussed cancer therapy and hyperthermia and NPs used in PTT, PDT, and MHT. IO-NPs have a particular effect on cancer therapy when combined with PTT, PDT, and MHT were the key topics of the review and were covered in depth. The IO-NPs formulations may be uniquely specialized in cancer treatments with PTT, PDT, and MHT, according to this review investigation.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Fotoquimioterapia , Compostos Férricos , Fenômenos Magnéticos , Neoplasias/tratamento farmacológico
3.
Cells ; 12(9)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37174622

RESUMO

Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the "powerhouses" that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Dinâmica Mitocondrial , Mitocôndrias/metabolismo , Insulina/metabolismo
4.
Int J Biol Macromol ; 235: 123821, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870633

RESUMO

A combination of chemotherapy and chemodynamic therapy (CDT) is being developed to improve the theranostic efficacy and biological safety of current therapies. However, most CDT agents are restricted due to complex issues such as multiple components, low colloidal stability, carrier-associated toxicity, insufficient reactive oxygen species generation, and poor targeting efficacy. To overcome these problems, a novel nanoplatform composed of fucoidan (Fu) and iron oxide (IO) nanoparticles (NPs) was developed to achieve chemotherapy combined with CDT synergistic treatment with a facile self-assembling manner, and the NPs were made up of Fu and IO, in which the Fu was not only used as a potential chemotherapeutic but was also designed to stabilize the IO and target P-selectin-overexpressing lung cancer cells, thereby producing oxidative stress and thus synergizing the CDT efficacy. The Fu-IO NPs exhibited a suitable diameter below 300 nm, which favored their cellular uptake by cancer cells. Microscopic and MRI data confirmed the lung cancer cellular uptake of the NPs due to active Fu targeting. Moreover, Fu-IO NPs induced efficient apoptosis of lung cancer cells, and thus offer significant anti-cancer functions by potential chemotherapeutic-CDT.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Neoplasias , Humanos , Medicina de Precisão , Selectina-P , Linhagem Celular Tumoral , Nanomedicina Teranóstica , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/uso terapêutico
5.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291827

RESUMO

Near-infrared-photothermal therapy (NIR-PTT) is a potential modality for cancer treatment. Directing photothermal effects specifically to cancer cells may enhance the therapeutic index for the best treatment outcome. While epithelial growth factor receptor (EGFR) is commonly overexpressed/genetically altered in human malignancy, it remains unknown whether targeting EGFR with tyrosine kinase inhibitor (TKI)-conjugated nanoparticles may direct NIR-PTT to cancers with cellular precision. In the present study, we tested this possibility through the fabrication of a polypyrrole-iron oxide-afatinib nanocomposite (PIA-NC). In the PIA-NC, a biocompatible and photothermally conductive polymer (polypyrrole) was conjugated to a TKI (afatinib) that binds to overexpressed wild-type EGFR without overt cytotoxicity. A Fenton catalyst (iron oxide) was further encapsulated in the NC to drive the intracellular ROS surge upon heat activation. Diverse physical and chemical characterization experiments were conducted. Particle internalization, cytotoxicity, ROS production, and apoptosis in EGFR-positive and -negative cell lines were investigated in the presence and absence of NIR. We found that the PIA-NCs were stable with a size of 243 nm and a zeta potential of +35 mV. These PIA-NCs were readily internalized close to the cell membrane by all types of cells used in the study. The Fourier transform infrared spectra showed 3295 cm-1 peaks; substantial O-H stretching was seen, with significant C=C stretching at 1637 cm-1; and a modest appearance of C-O-H bending at 1444 cm-1 confirmed the chemical conjugation of afatinib but not iron oxide to the NC. At a NIR-PTT energy level that has a minimal cytotoxic effect, PIA-NC significantly sensitizes EGFR-overexpressing A549 lung cancer cells to NIR-PTT-induced cytotoxicity at a rate of 70%, but in EGFR-negative 3T3 fibroblasts the rate was 30%. Within 1 min of NIR-PTT, a surge of intracellular ROS was found in PIA-NC-treated A549 cells. This was followed by early induction of cellular apoptosis for 54 ± 0.081% of A549 cells. The number of viable cells was less than a quarter of a percent. Viability levels of A549 cells that had been treated with NIR or PIA were only 50 ± 0.216% and 80 ± 0.216%, respectively. Only 10 ± 0.816% of NIH3T3 cells had undergone necrosis, meaning that 90 ± 0.124% were alive. Viability levels were 65 ± 0.081% and 81 ± 0.2%, respectively, when only NIR and PIA were used. PIA binding was effective against A549 cells but not against NIH3T3 cells. The outcome revealed that higher levels of NC + NIR exposure caused cancer cells to produce more ROS. In summary, our findings proved that a molecularly targeted NC provides an orchestrated platform for cancer cell-specific delivery of NIR-PTT. The geometric proximity design indicates a novel approach to minimizing the off-target biological effects of NIR-PTT. The potential of PIA-NC to be further developed into real-world application warrants further investigation.

6.
Nanomaterials (Basel) ; 12(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079985

RESUMO

Globally, breast cancer is one of the most prevalent diseases, inducing critical intimidation to human health. Lipid-based nanomaterials have been successfully demonstrated as drug carriers for breast cancer treatment. To date, the development of a better drug delivery system based on lipid nanomaterials is still urgent to make the treatment and diagnosis easily accessible to breast cancer patients. In a drug delivery system, lipid nanomaterials have revealed distinctive features, including high biocompatibility and efficient drug delivery. Specifically, a targeted drug delivery system based on lipid nanomaterials has inherited the advantage of optimum dosage and low side effects. In this review, insights on currently used potential lipid-based nanomaterials are collected and introduced. The review sheds light on conjugation, targeting, diagnosis, treatment, and clinical significance of lipid-based nanomaterials to treat breast cancer. Furthermore, a brighter side of lipid-based nanomaterials as future potential drug delivery systems for breast cancer therapy is discussed.

7.
ACS Appl Mater Interfaces ; 13(27): 32226-32241, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34210116

RESUMO

The touchstone for bone replacing or anchoring trauma implants, besides resorption, includes functional ankylosis at a fixation point and replacement by viable functional neo-bone tissues. These parameters redefined the concept of "resorbability" as "bioresorbability." Interference screws are the most commonly used resorbable anchoring implants for anterior cruciate ligament (ACL) reconstruction (surgery). Over the years, the bioresorbable screw fixation armamentarium has amplified countless choices, but instability and postimplantation complications have raised concerns about its reliability and efficacy. Owing to this interest, in this work, bioactive glass fiber-reinforced plastic (BGFP) composites with (BGFPnb5) and without (BGFP5) niobicoxide composing multiplexed network modifiers are reported as bioresorbable bone-anchoring substitutes. These synergistically designed composites have a fabricated structure of continuous, unidirectional BG fibers reinforced in an epoxy resin matrix using "melt-drawing and microfabrication" technology. The BGFP microarchitecture is comprised of multiplexed oxide components that influence bioactive response in a distinctive lophelia atoll-like apatite formation. Furthermore, it assists in the proliferation, adherence, and migration of bone marrow-derived mesenchymal stem cells. It also exhibits superior physicochemical characteristics such as surface roughness, hydrophilic exposure, distinctive flexural strength, and bioresorption. Thus, it induces restorative bone osseointegration and osteoconduction and actuates periosteum function. In addition, the BGFP influences the reduction of DH5-α Escherichia coli in suspension culture, demonstrating potential antibacterial efficacy. In conclusion, the BGFP composite therapeutic efficacy demonstrates distinctive material characteristics aiding in bone regeneration and restoration that could serve as a pioneer in orthopedic regenerative medicine.


Assuntos
Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Vidro/química , Periósteo/efeitos dos fármacos , Plásticos/química , Regeneração Óssea/efeitos dos fármacos , Cristalografia por Raios X , Teste de Materiais , Osseointegração/efeitos dos fármacos , Periósteo/fisiologia , Próteses e Implantes
8.
Int J Biol Macromol ; 166: 98-107, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091478

RESUMO

Nanomaterial mediated cancer/tumor photo driven hyperthermia has obtained great awareness. Nevertheless, it is a challenge for improving the hyperthermic efficacy lacking resistance to stimulated thermal stress. We thus developed a bioinspired nano-platform utilizing inclusion complexation between photosensitive polypyrrole (Ppy) nanoparticles (NP) and fucoidan (FU). This FU-Ppy NP proved to be an excellent P-selectin-mediated, lung cancer-cell/tumor targeting delivery and specific accumulation, could augment cancer/tumor oxidative stress levels through producing cellular reactive oxygen species. Potent ROS/photothermal combinational therapeutic effects were exhibited by the bioinspired FU-Ppy NP through a selective P-selectin cancer/tumor targeting aptitude for the lung cancer cells/tumor compared with other nano-formulations. The usage of FU-Ppy NP also involves the potential mechanism of suppressing the biological expression of tumor vascular endothelial growth factor (VEGF). This FU biological macromolecule-amplified photothermally therapeutic nano-platform has promising potential for future medical translation in eradicating numerous tumors.


Assuntos
Neoplasias Pulmonares/terapia , Nanopartículas/química , Terapia Fototérmica/métodos , Polímeros/química , Polissacarídeos/química , Pirróis/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Luz , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Nanopartículas/efeitos da radiação , Nanopartículas/uso terapêutico , Selectina-P/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA