RESUMO
The very low density lipoprotein receptor (VLDLR) binds, among other ligands, the Mr 40,000 receptor-associated protein (RAP) and a variety of serine proteinase-serpin complexes, including complexes of the proteinase urokinase-type plasminogen activator (uPA) with the serpins plasminogen activator inhibitor-1 (PAI-1) and protease nexin-1 (PN-1). We have analyzed the binding of RAP, uPA.PAI-1, and uPA.PN-1 to two naturally occurring VLDLR variants, VLDLR-I, containing all eight complement-type repeats, and VLDLR-III, lacking the third complement-type repeat, encoded by exon 4. VLDLR-III displayed approximately 4-fold lower binding of RAP than VLDLR-I and approximately 10-fold lower binding of the most C-terminal one of the three domains of RAP. In contrast, the binding of uPA.PAI-1 and uPA.PN-1 to the two VLDLR variants was indistinguishable. Surprisingly, uPA.PN-1, but not uPA.PAI-1, competed RAP binding to both VLDLR variants. These observations show that the third complement-type repeat plays a crucial role in maintaining the contact sites needed for optimal recognition of RAP, but does not affect the proteinase-serpin complex contact sites, and that two ligands can show full cross-competition without sharing the same contacts with the receptor. These results elucidate the mechanisms of molecular recognition of ligands by receptors of the low density lipoprotein receptor family.
Assuntos
Proteínas de Transporte/metabolismo , Glicoproteínas/metabolismo , Ligantes , Receptores de LDL/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Ligação Competitiva/genética , Células CHO , Proteínas do Sistema Complemento/genética , Cricetinae , Reagentes de Ligações Cruzadas/metabolismo , Glutaral/metabolismo , Proteína Associada a Proteínas Relacionadas a Receptor de LDL , Ligação Proteica , RNA Mensageiro/análise , Receptores de LDL/genética , Serina Endopeptidases/metabolismo , Serpinas/metabolismo , TransfecçãoRESUMO
Very-low density lipoprotein receptor (VLDLR) belongs to the low-density lipoprotein receptor family of endocytosis receptors. It binds a variety of different ligands, including apolipoprotein E, Mr-40,000 receptor-associated-protein (RAP), and some serine proteinase/serpin complexes. We previously demonstrated the occurrence of two forms of VLDLR in SDS/PAGE, migrating with Mr 105,000 and Mr 130,000, respectively [Heegaard, C. W., Simonsen, A. C. W., Oka, K., Kjøller, L., Christensen, A., Madsen, B., Ellgaard, L., Chan, L. & Andreasen, P. A. (1995) J. Biol. Chem. 270, 20,855-20,869]. We now demonstrate that these two forms correspond to forms with the absence (type-II) and presence (type-I) of the O-linked glycosylation domain encoded by exon 16, respectively. We show that the two forms have the same binding affinity to RAP and serine proteinase/serpin complexes. Using reverse transcription and PCR, we demonstrate that the splice variation giving rise to the two forms is highly cell specific. In particular, we demonstrate that human breast carcinomas express predominantly or exclusively the variant lacking exon 16. By immunohistochemistry, we demonstrate that VLDLR is mainly expressed by the epithelial cancer cells in these carcinomas. The VLDLR variant expressed by epithelial cancer cells could function in the clearance of cell-surface-associated serine proteinase/serpin complexes in breast carcinomas.