Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(1992): 20221062, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722085

RESUMO

Mammalian omnivores are a broad group of species that are often treated uniformly in ecological studies. Here, we incorporate omnivorous dietary differences to investigate previously found mammalian macroevolutionary and macroecological trends. We investigate the frequency with which vertebrate prey, invertebrate prey, fibrous plant material and non-fibrous plant material co-occur in the diets of terrestrial mammals. We quantify the body size distributions and phylogenetic signal of different omnivorous diets and use multistate reversible jump Markov chain Monte Carlo methods to assess the transition rates between diets on the mammalian phylogenetic tree. We find omnivores that consume all four food types are relatively rare, as most omnivores consume only invertebrate prey and non-fibrous plants. In addition, omnivores that only consume invertebrate prey, many of which are from Rodentia, are on average smaller than omnivores that incorporate vertebrate prey. Our transition models have high rates from invertivorous omnivory to herbivory, and from vertivory to prey mixing and ultimately invertivory. We suggest prey type is an important aspect of omnivore macroevolution and macroecology, as it is correlated with body mass, evolutionary history and diet-related evolutionary transition rates. Future work should avoid lumping omnivores into one category given the ecological variety of omnivore diets and their strong evolutionary influence.


Assuntos
Dieta , Mamíferos , Animais , Filogenia , Tamanho Corporal
2.
iScience ; 25(10): 105101, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36212022

RESUMO

Understanding variation of traits within and among species through time and across space is central to many questions in biology. Many resources assemble species-level trait data, but the data and metadata underlying those trait measurements are often not reported. Here, we introduce FuTRES (Functional Trait Resource for Environmental Studies; pronounced few-tress), an online datastore and community resource for individual-level trait reporting that utilizes a semantic framework. FuTRES already stores millions of trait measurements for paleobiological, zooarchaeological, and modern specimens, with a current focus on mammals. We compare dynamically derived extant mammal species' body size measurements in FuTRES with summary values from other compilations, highlighting potential issues with simply reporting a single mean estimate. We then show that individual-level data improve estimates of body mass-including uncertainty-for zooarchaeological specimens. FuTRES facilitates trait data integration and discoverability, accelerating new research agendas, especially scaling from intra- to interspecific trait variability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA