Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genet Med ; 25(12): 100979, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689994

RESUMO

PURPOSE: CNGA3 encoding the main subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors is one of the major disease-associated genes for achromatopsia. Most CNGA3 variants are missense variants with the majority being functionally uncharacterized and therefore hampering genetic diagnosis. In light of potential gene therapy, objective variant pathogenicity assessment is essential. METHODS: We established a medium-throughput aequorin-based luminescence bioassay allowing mutant CNGA3 channel function assessment via quantification of CNGA3 channel-mediated calcium influx in a cell culture system, thereby enabling American College of Medical Genetics and Genomics/Association for Molecular Pathology-based variant re-classification. RESULTS: We provide functional read-out obtained for 150 yet uncharacterized CNGA3 missense substitutions of which 55 were previously categorized as variants of uncertain significance (VUS) identifying 25 as functionally normal and 125 as functionally abnormal. These data enabled the American College of Medical Genetics and Genomics/ Association for Molecular Pathology-based variant re-classification of 52/55 VUS as either benign, likely benign, or likely pathogenic reaching a VUS re-classification rate of 94.5%. CONCLUSION: Our aequorin-based bioassay allows functionally ensured clinical variant interpretation for 150 CNGA3 missense variants enabling and supporting VUS re-classification and assuring molecular diagnosis to patients affected by CNGA3-associated achromatopsia, hereby identifying patients eligible for future gene therapy trials on this disease.


Assuntos
Defeitos da Visão Cromática , Humanos , Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/patologia , Equorina/genética , Células Fotorreceptoras Retinianas Cones/patologia , Mutação de Sentido Incorreto/genética , Genômica , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
2.
Sci Rep ; 13(1): 2896, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36801918

RESUMO

Achromatopsia is an autosomal recessive cone photoreceptor disease that is frequently caused by pathogenic variants in the CNGA3 gene. Here, we present a systematic functional analysis of 20 CNGA3 splice site variants detected in our large cohort of achromatopsia patients and/or listed in common variant databases. All variants were analyzed by functional splice assays based on the pSPL3 exon trapping vector. We demonstrated that ten variants, both at canonical and non-canonical splice sites, induced aberrant splicing, including intronic nucleotide retention, exonic nucleotide deletion and exon skipping, resulting in 21 different aberrant transcripts. Of these, eleven were predicted to introduce a premature termination codon. The pathogenicity of all variants was assessed based on established guidelines for variant classification. Incorporation of the results of our functional analyses enabled re-classification of 75% of variants previously classified as variants of uncertain significance into either likely benign or likely pathogenic. Our study is the first in which a systematic characterization of putative CNGA3 splice variants has been performed. We demonstrated the utility of pSPL3 based minigene assays in the effective assessment of putative splice variants. Our findings improve the diagnosis of achromatopsia patients, who may thus benefit from future gene-based therapeutic strategies.


Assuntos
Defeitos da Visão Cromática , Humanos , Defeitos da Visão Cromática/genética , Splicing de RNA , Éxons/genética , Nucleotídeos , Sítios de Splice de RNA/genética , Mutação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
3.
Mol Ther Nucleic Acids ; 29: 511-524, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35991315

RESUMO

Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing Streptococcus pyogenes Cas9 (single and dual guide RNA) or Streptococcus pyogenes Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an ABCA4 splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in ABCA4.

4.
Hum Mutat ; 43(7): 832-858, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332618

RESUMO

Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying "likely disease-causing" variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as "likely disease-causing" according to ACMG/AMP criteria. We report 48 novel "likely disease-causing" variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.


Assuntos
Defeitos da Visão Cromática , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Humanos , Mutação , Células Fotorreceptoras Retinianas Cones
5.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360608

RESUMO

Achromatopsia (ACHM) is a rare autosomal recessively inherited retinal disease characterized by congenital photophobia, nystagmus, low visual acuity, and absence of color vision. ACHM is genetically heterogeneous and can be caused by biallelic mutations in the genes CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, or ATF6. We undertook molecular genetic analysis in a single female patient with a clinical diagnosis of ACHM and identified the homozygous variant c.778G>C;p.(D260H) in the CNGA3 gene. While segregation analysis in the father, as expected, identified the CNGA3 variant in a heterozygous state, it could not be displayed in the mother. Microsatellite marker analysis provided evidence that the homozygosity of the CNGA3 variant is due to partial or complete paternal uniparental isodisomy (UPD) of chromosome 2 in the patient. Apart from the ACHM phenotype, the patient was clinically unsuspicious and healthy. This is one of few examples proving UPD as the underlying mechanism for the clinical manifestation of a recessive mutation in a patient with inherited retinal disease. It also highlights the importance of segregation analysis in both parents of a given patient or especially in cases of homozygous recessive mutations, as UPD has significant implications for genetic counseling with a very low recurrence risk assessment in such families.


Assuntos
Cromossomos Humanos Par 2/genética , Defeitos da Visão Cromática/patologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Pai , Mutação , Dissomia Uniparental , Adolescente , Defeitos da Visão Cromática/genética , Feminino , Genes Recessivos , Humanos , Masculino , Linhagem , Fenótipo
6.
Hum Mol Genet ; 30(13): 1218-1229, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33891002

RESUMO

Cone dystrophies are a rare subgroup of inherited retinal dystrophies and hallmarked by color vision defects, low or decreasing visual acuity and central vision loss, nystagmus and photophobia. Applying genome-wide linkage analysis and array comparative genome hybridization, we identified a locus for autosomal dominant cone dystrophy on chromosome 16q12 in four independent multigeneration families. The locus is defined by duplications of variable size with a smallest region of overlap of 608 kb affecting the IRXB gene cluster and encompasses the genes IRX5 and IRX6. IRX5 and IRX6 belong to the Iroquois (Iro) protein family of homeodomain-containing transcription factors involved in patterning and regionalization of embryonic tissue in vertebrates, including the eye and the retina. All patients presented with a unique progressive cone dystrophy phenotype hallmarked by early tritanopic color vision defects. We propose that the disease underlies a misregulation of the IRXB gene cluster on chromosome 16q12 and demonstrate that overexpression of Irx5a and Irx6a, the two orthologous genes in zebrafish, results in visual impairment in 5-day-old zebrafish larvae.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 16/genética , Defeitos da Visão Cromática/genética , Distrofia de Cones/genética , Proteínas de Homeodomínio/genética , Família Multigênica , Fatores de Transcrição/genética , Animais , Hibridização Genômica Comparativa/métodos , Saúde da Família , Feminino , Regulação da Expressão Gênica , Genes Dominantes/genética , Humanos , Masculino , Linhagem , Análise de Sequência de DNA/métodos , Peixe-Zebra/genética
7.
Mol Pharmacol ; 99(6): 460-468, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33827965

RESUMO

Trafficking deficiency caused by missense mutations is a well known phenomenon that occurs for mutant, misfolded proteins. Typically, the misfolded protein is retained by the protein quality-control system and degraded by the endoplasmic reticulum-associated protein degradation pathway and thus does not reach its destination, although residual function of the protein may be preserved. Chemical and pharmacological chaperones can improve the targeting of trafficking-deficient proteins and thus may be promising candidates for therapeutic applications. Here, we report the application of a cellular bioassay based on the bioluminescent calcium reporter aequorin to quantify surface expression of mutant CNGA3 channels associated with the autosomal recessively inherited retinal disease achromatopsia. A screening of 77 compounds enabled the identification of effective chemical and pharmacological chaperones that result in a 1.5- to 4.8-fold increase of surface expression of mutant CNGA3. Using selected compounds, we confirmed that the rescue of the defective trafficking is not limited to a single mutation in CNGA3. Active compounds and our structure-activity correlated data for the dihydropyridine compound class may provide valuable information for developing a treatment of the trafficking defect in achromatopsia. SIGNIFICANCE STATEMENT: This study describes a novel luminescence-based assay to detect the surface expression of mutant trafficking-deficient CNGA3 channels based on the calcium-sensitive photoprotein aequorin. Using this assay for a compound screening, this study identifies novel chemical and pharmacological chaperones that restore the surface localization of mutant trafficking-deficient CNGA3 channels. The results from this work may serve as starting point for the development of potent compounds that rescue trafficking deficiencies in the autosomal recessively inherited retinal disease achromatopsia.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/efeitos dos fármacos , Mutação de Sentido Incorreto , Equorina/genética , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Di-Hidropiridinas/farmacologia , Genes Recessivos , Células HEK293 , Humanos , Transporte Proteico
8.
J Clin Invest ; 128(12): 5663-5675, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30418171

RESUMO

Mutations in CNGA3 and CNGB3, the genes encoding the subunits of the tetrameric cone photoreceptor cyclic nucleotide-gated ion channel, cause achromatopsia, a congenital retinal disorder characterized by loss of cone function. However, a small number of patients carrying the CNGB3/c.1208G>A;p.R403Q mutation present with a variable retinal phenotype ranging from complete and incomplete achromatopsia to moderate cone dysfunction or progressive cone dystrophy. By exploring a large patient cohort and published cases, we identified 16 unrelated individuals who were homozygous or (compound-)heterozygous for the CNGB3/c.1208G>A;p.R403Q mutation. In-depth genetic and clinical analysis revealed a co-occurrence of a mutant CNGA3 allele in a high proportion of these patients (10 of 16), likely contributing to the disease phenotype. To verify these findings, we generated a Cngb3R403Q/R403Q mouse model, which was crossbred with Cnga3-deficient (Cnga3-/-) mice to obtain triallelic Cnga3+/- Cngb3R403Q/R403Q mutants. As in human subjects, there was a striking genotype-phenotype correlation, since the presence of 1 Cnga3-null allele exacerbated the cone dystrophy phenotype in Cngb3R403Q/R403Q mice. These findings strongly suggest a digenic and triallelic inheritance pattern in a subset of patients with achromatopsia/severe cone dystrophy linked to the CNGB3/p.R403Q mutation, with important implications for diagnosis, prognosis, and genetic counseling.


Assuntos
Defeitos da Visão Cromática , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Heterozigoto , Ativação do Canal Iônico , Mutação de Sentido Incorreto , Células Fotorreceptoras Retinianas Cones , Doenças Retinianas , Substituição de Aminoácidos , Animais , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/metabolismo , Defeitos da Visão Cromática/patologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
9.
JAMA Ophthalmol ; 136(7): 761-769, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800053

RESUMO

Importance: Co-occurrence of retinitis pigmentosa (RP) and olfactory dysfunction may have a common genetic cause. Objective: To report olfactory function and the retinal phenotype in patients with biallelic mutations in CNGB1, a gene coding for a signal transduction channel subunit expressed in rod photoreceptors and olfactory sensory neurons. Design, Setting, and Participants: This case series was conducted from August 2015 through July 2017. The setting was a multicenter study involving 4 tertiary referral centers for inherited retinal dystrophies. Participants were 9 patients with CNGB1-associated RP. Main Outcomes and Measures: Results of olfactory testing, ocular phenotyping, and molecular genetic testing using targeted next-generation sequencing. Results: Nine patients were included in the study, 3 of whom were female. Their ages ranged between 34 and 79 years. All patients had an early onset of night blindness but were usually not diagnosed as having RP before the fourth decade because of slow retinal degeneration. Retinal features were characteristic of a rod-cone dystrophy. Olfactory testing revealed reduced or absent olfactory function, with all except one patient scoring in the lowest quartile in relation to age-related norms. Brain magnetic resonance imaging and electroencephalography measurements in response to olfactory stimulation were available for 1 patient and revealed no visible olfactory bulbs and reduced responses to odor, respectively. Molecular genetic testing identified 5 novel (c.1312C>T, c.2210G>A, c.2492+1G>A, c.2763C>G, and c.3044_3050delGGAAATC) and 5 previously reported mutations in CNGB1. Conclusions and Relevance: Mutations in CNGB1 may cause an autosomal recessive RP-olfactory dysfunction syndrome characterized by a slow progression of retinal degeneration and variable anosmia or hyposmia.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Mutação , Transtornos do Olfato/genética , Retinose Pigmentar/genética , Adulto , Idoso , Análise Mutacional de DNA , Eletroencefalografia , Eletrorretinografia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Transtornos do Olfato/diagnóstico , Percepção Olfatória , Oftalmoscopia , Fenótipo , Retinose Pigmentar/diagnóstico , Tomografia de Coerência Óptica
10.
Exp Eye Res ; 171: 48-53, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29499183

RESUMO

The cyclic nucleotide-gated (CNG) channel - composed of CNGA3 and CNGB3 subunits - mediates the influx of cations in cone photoreceptors after light stimulation and thus is a key element in cone phototransduction. Mutations in CNGA3 and CNGB3 are associated with achromatopsia, a rare autosomal recessive retinal disorder. Here, we demonstrate that the presence of an early nonsense mutation in CNGA3 induces the usage of a downstream alternative translation initiation site giving rise to a short CNGA3 isoform. The expression of this short isoform was verified by Western blot analysis and DAB staining of HEK293 cells and cone photoreceptor-like 661W cells expressing CNGA3-GST fusion constructs. Functionality of the short isoform was confirmed by a cellular calcium influx assay. Furthermore, patients carrying an early nonsense mutation were analyzed for residual cone photoreceptor function in order to identify a potential role of the short isoform to modify the clinical outcome in achromatopsia patients. Yet the results suggest that the short isoform is not able to compensate for the loss of the long isoform leaving the biological role of this variant unclear.


Assuntos
Códon sem Sentido/genética , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Regulação da Expressão Gênica/fisiologia , Iniciação Traducional da Cadeia Peptídica/genética , Isoformas de Proteínas/genética , Animais , Western Blotting , Linhagem Celular , Defeitos da Visão Cromática/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HEK293/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Reação em Cadeia da Polimerase , Células Fotorreceptoras Retinianas Cones/metabolismo , Transfecção
11.
Hum Mutat ; 38(11): 1579-1591, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28795510

RESUMO

Achromatopsia is a rare autosomal recessive cone disorder characterized by color vision defects, photophobia, nystagmus, and severely reduced visual acuity. The disease is caused by mutations in genes encoding crucial components of the cone phototransduction cascade (CNGA3, CNGB3, GNAT2, PDE6C, and PDE6H) or in ATF6, involved in the unfolded protein response. CNGB3 encoding the beta subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors is the major achromatopsia gene. Here, we present a comprehensive spectrum of CNGB3 mutations and their prevalence in a cohort of 1074 independent families clinically diagnosed with achromatopsia. Of these, 485 (45.2%) carried mutations in CNGB3. We identified a total of 98 different potentially disease-causing CNGB3 variants, 58 of which are novel. About 10% of patients with CNGB3 mutations only harbored a single heterozygous variant. Therefore, we performed quantitative real-time PCR in 43 of such single heterozygotes in search of the missing allele, followed by microarray-based comparative genomic hybridization and breakpoint mapping. We discovered nine different heterozygous copy number variations encompassing one to 10 consecutive exons in 16 unrelated patients. Moreover, one additional patient with a homozygous CNGB3 deletion encompassing exons 4-18 was identified, highlighting the importance of CNV analysis for this gene.


Assuntos
Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Variações do Número de Cópias de DNA , Mutação , Alelos , Mapeamento Cromossômico , Segregação de Cromossomos , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Éxons , Efeito Fundador , Genótipo , Humanos , Taxa de Mutação
12.
Mol Vis ; 21: 236-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25802487

RESUMO

PURPOSE: To investigate the molecular basis of retinitis pigmentosa in two consanguineous families of Pakistani origin with multiple affected members. METHODS: Homozygosity mapping and Sanger sequencing of candidate genes were performed in one family while the other was analyzed with whole exome next-generation sequencing. A minigene splicing assay was used to confirm the splicing defects. RESULTS: In family MA48, a novel homozygous nucleotide substitution in C8orf37, c.244-2A>C, that disrupted the consensus splice acceptor site of exon 3 was found. The minigene splicing assay revealed that this mutation activated a cryptic splice site within exon 3, causing a 22 bp deletion in the transcript that is predicted to lead to a frameshift followed by premature protein truncation. In family MA13, a novel homozygous null mutation in C8orf37, c.555G>A, p.W185*, was identified. Both mutations segregated with the disease phenotype as expected in a recessive manner and were absent in 8,244 unrelated individuals of South Asian origin. CONCLUSIONS: In this report, we describe C8orf37 mutations that cause retinal dystrophy in two families of Pakistani origin, contributing further data on the phenotype and the spectrum of mutations in this form of retinitis pigmentosa.


Assuntos
Consanguinidade , Mutação , Proteínas/genética , Retinose Pigmentar/genética , Adolescente , Adulto , Criança , Análise Mutacional de DNA , Éxons , Feminino , Genes Recessivos , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Paquistão , Splicing de RNA , Retinose Pigmentar/patologia
13.
Eur J Hum Genet ; 23(4): 473-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25052312

RESUMO

We assessed a large consanguineous Pakistani family (PKAB157) segregating early onset low vision problems. Funduscopic and electroretinographic evaluation of affected individuals revealed juvenile cone-rod dystrophy (CRD) with maculopathy. Other clinical symptoms included loss of color discrimination, photophobia and nystagmus. Whole-exome sequencing, segregation and haplotype analyses demonstrated that a transition variant (c.955T>C; p.(Cys319Arg)) in CNGA3 co-segregated with the CRD phenotype in family PKAB157. The ability of CNGA3 channel to influx calcium in response to agonist, when expressed either alone or together with the wild-type CNGB3 subunit in HEK293 cells, was completely abolished due to p.Cys319Arg variant. Western blotting and immunolocalization studies suggest that a decreased channel density in the HEK293 cell membrane due to impaired folding and/or trafficking of the CNGA3 protein is the main pathogenic effect of the p.Cys319Arg variant. Mutant alleles of the human cone photoreceptor cyclic nucleotide-gated channel (CNGA3) are frequently associated with achromatopsia. In rare cases, variants in CNGA3 are also associated with cone dystrophy, Leber's congenital amaurosis and oligo cone trichromacy. The identification of predicted p.(Cys319Arg) missense variant in CNGA3 expands the repertoire of the known genetic causes of CRD and phenotypic spectrum of CNGA3 alleles.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Homozigoto , Mutação de Sentido Incorreto , Retinose Pigmentar/genética , Alelos , Povo Asiático/genética , Defeitos da Visão Cromática/genética , Biologia Computacional , Consanguinidade , Eletrorretinografia , Variação Genética , Estudo de Associação Genômica Ampla , Células HEK293 , Haplótipos , Humanos , Amaurose Congênita de Leber/genética , Paquistão , Fenótipo , Células Fotorreceptoras Retinianas Cones/patologia , Análise de Sequência de DNA
14.
Hum Mutat ; 31(7): 830-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20506298

RESUMO

The CNGA3 gene encodes the A3 subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel, an essential component of the phototransduction cascade. Certain mutations in CNGA3 cause autosomal recessive achromatopsia, a retinal disorder characterized by severely reduced visual acuity, lack of color discrimination, photophobia, and nystagmus. We identified three novel mutations in the pore-forming region of CNGA3 (L363P, G367V, and E376K) in patients diagnosed with achromatopsia. We assessed the expression and function of channels with these three new and two previously described mutations (S341P and P372S) in a heterologous HEK293 cell expression system using Western blot, subcellular localization on the basis of immunocytochemistry, calcium imaging, and patch clamp recordings. In this first comparative functional analysis of disease-associated mutations in the pore of a CNG channel, we found impaired surface expression of S341P, L363P, and P372S mutants and reduced macroscopic currents for channels with the mutations S341P, G367V, and E376K. Calcium imaging and patch clamp experiments after incubation at 37 degrees C revealed nonfunctional homo- and heteromeric channels in all five mutants, but incubation at 27 degrees C combined with coexpression of the B3 subunit restored residual function of channels with the mutations S341P, G367V, and E376K.


Assuntos
Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Mutação , Células Fotorreceptoras Retinianas Cones/metabolismo , Sequência de Aminoácidos , Transporte Biológico/efeitos dos fármacos , Western Blotting , Cálcio/metabolismo , Linhagem Celular , GMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Relação Dose-Resposta a Droga , Humanos , Imuno-Histoquímica , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Transfecção
15.
Hum Mutat ; 29(10): 1228-36, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18521937

RESUMO

CNGA3 encodes the A-subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel, which is a crucial component of the phototransduction cascade in cone outer segments. Mutations in the CNGA3 gene have been associated with complete and incomplete forms of achromatopsia (ACHR), a congenital, autosomal recessively inherited retinal disorder characterized by lack of color discrimination, reduced visual acuity, nystagmus, and photophobia. Here we report the identification of three novel CNGA3 missense mutations in ACHR patients: c.682G>A (p.E228 K), c.1315C>T (p.R439W), and c.1405G>A (p.A469 T), and the detailed functional analyses of these new as well as five previously reported mutations (R283Q, T291R, F547L, G557R, and E590 K), in conjunction with clinical data of patients carrying these mutations, to establish genotype-phenotype correlations. The functional characterization of mutant CNGA3 channels was performed with calcium imaging and patch clamp recordings in a heterologous HEK293 cell expression system. Results were corroborated by immunostaining and colocalization experiments of the channel protein with the plasma membrane. Several mutations evoked pronounced alterations of the apparent cGMP sensitivity of mutant channels. These functional defects were fully or partially compensated by coexpressing the mutant CNGA3 subunit with the wild-type CNGB3 subunit for channels with the mutations R439W, A469 T, F547L, and E590 K. We could show that several mutant channels with agonist dose-response relationships similar to the wild-type exhibited severely impaired membrane targeting. In addition, this study presents the positive effect of reduced cell culture temperature on surface expression and functional performance of mutant CNG channels with protein folding or trafficking defects.


Assuntos
Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Mutação , Defeitos da Visão Cromática/metabolismo , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/análise , Humanos , Imuno-Histoquímica , Modelos Biológicos , Técnicas de Patch-Clamp , Transporte Proteico
16.
Eur J Neurosci ; 27(9): 2391-401, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18445228

RESUMO

Mutations in the CNGA3 gene have been associated with complete and incomplete forms of total colour blindness (achromatopsia), a disorder characterized by reduced visual acuity, lack of colour discrimination, photophobia and nystagmus. CNGA3 encodes the A-subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel, an essential component of the phototransduction cascade. Here we report the identification of three new CNGA3 mutations in patients with achromatopsia. To assess the pathogenicity of these newly identified and four previously reported mutations, mutant CNGA3 channels were heterologously expressed in a human embryonic kidney cell line (HEK293 cells) and functionally analysed using calcium imaging. Channels with the mutations R427C and R563C showed a response in imaging experiments and were subsequently characterized in-depth with the patch-clamp technique. The mutant channels were analysed as homooligomers and also as heterooligomers with the wild-type B-subunit present in native channels. Overall, cyclic guanosine monophosphate (cGMP) maximum currents of mutant channels were profoundly reduced in homo- and heteromers. Treatment with the chemical chaperone glycerol effectively increased macroscopic currents, presumably by enhancing surface expression of mutant channels as confirmed by immunocytochemistry. These results suggest decreased channel density in the cell membrane due to impaired folding or trafficking of the channel protein as the main pathogenic effect of the mutations R427C and R563C. Moreover, A3(R427C) homomers showed distinctly increased cGMP and cyclic adenosine monophosphate (cAMP) sensitivities as well as cAMP fractional currents that were raised to over 90% of cGMP maximum currents. Co-expression of A3(R427C) with the B3 subunit compensated for most of these aberrant properties, apart from the reduced cGMP maximum currents.


Assuntos
Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Western Blotting , Humanos , Imuno-Histoquímica , Mutação , Técnicas de Patch-Clamp , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA