Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 76: 103338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354647

RESUMO

Myofibrillar myopathy (MFM) is a rare genetic disorder characterized by muscular dystrophy that is often associated with cardiac disease. This disease is caused by mutations in several genes, among them DES (encoding desmin) is the most frequently affected. Peripheral blood mononuclear cells from 5 different MFM patients with different DES mutations were reprogrammed into induced pluripotent stem cells (IPSC) using non-integrative vectors. For each patient, one IPSC clone was selected and demonstrated pluripotency hallmarks without genomic abnormalities. SNP profiles were identical to the cells of origin and all the clones have the capacity to differentiate into all three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miopatias Congênitas Estruturais , Humanos , Leucócitos Mononucleares , Miopatias Congênitas Estruturais/genética , Mutação/genética
2.
Front Bioeng Biotechnol ; 10: 1008436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406217

RESUMO

As part of applications dealing with cardiovascular tissue engineering, drop-cast polyvinylidene fluoride (PVDF) scaffolds have been treated by cold plasma to enhance their adherence to cardiac cells. The scaffolds were treated in a dielectric barrier device where cold plasma was generated in a gaseous environment combining a carrier gas (helium or argon) with/without a reactive gas (molecular nitrogen). We show that an Ar-N2 plasma treatment of 10 min results in significant hydrophilization of the scaffolds, with contact angles as low as 52.4° instead of 132.2° for native PVDF scaffolds. Correlation between optical emission spectroscopy and X-ray photoelectron spectroscopy shows that OH radicals from the plasma phase can functionalize the surface scaffolds, resulting in improved wettability. For all plasma-treated PVDF scaffolds, the adhesion and maturation of primary cardiomyocytes is increased, showing a well-organized sarcomeric structure (α-actinin immunostaining). The efficacy of plasma treatment was also supported by real-time PCR analysis to demonstrate an increased expression of the genes related to adhesion and cardiomyocyte function. Finally, the biocompatibility of the PVDF scaffolds was studied in a cardiac environment, after implantation of acellular scaffolds on the surface of the heart of healthy mice. Seven and 28 days after implantation, no exuberant fibrosis and no multinucleated giant cells were visible in the grafted area, hence demonstrating the absence of foreign body reaction and the biocompatibility of these scaffolds.

3.
PLoS One ; 17(4): e0254274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35436319

RESUMO

PURPOSE: Greater muscle fragility is thought to cause the exhaustion of the muscle stem cells during successive degeneration/repair cycles, leading to muscle wasting and weakness in Duchenne muscular dystrophy. Chronic voluntary exercise can partially reduce the susceptibility to contraction induced-muscle damage, i.e., muscle fragility, as shown by a reduced immediate maximal force drop following lengthening contractions, in the dystrophic mdx mice. Here, we studied the effect of Prospero-related homeobox factor 1 gene (Prox1) transfer (overexpression) using an AAV on fragility in chronically exercised mdx mice, because Prox1 promotes slower type fibres in healthy mice and slower fibres are less fragile in mdx muscle. METHODS: Both tibialis anterior muscles of the same mdx mouse received the transfer of Prox1 and PBS and the mice performed voluntary running into a wheel during 1 month. We also performed Prox1 transfer in sedentary mdx mice. In situ maximal force production of the muscle in response to nerve stimulation was assessed before, during and after 10 lengthening contractions. Molecular muscle parameters were also evaluated. RESULTS: Interestingly, Prox1 transfer reduced the isometric force drop following lengthening contractions in exercised mdx mice (p < 0.05 to 0.01), but not in sedentary mdx mice. It also increased the muscle expression of Myh7 (p < 0.001), MHC-2x (p < 0.01) and Trpc1 (p < 0.01), whereas it reduced that one of Myh4 (p < 0.001) and MHC-2b (p < 0.01) in exercised mdx mice. Moreover, Prox1 transfer decreased the absolute maximal isometric force (p < 0.01), but not the specific maximal isometric force, before lengthening contraction in exercised (p < 0.01) and sedentary mdx mice. CONCLUSION: Our results indicate that Prox1 transfer increased the beneficial effect of chronic exercise on muscle fragility in mdx mice, but reduced absolute maximal force. Thus, the potential clinical benefit of the transfer of Prox1 into exercised dystrophic muscle can merit further investigation.


Assuntos
Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Animais , Terapia Genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia
4.
Acta Biomater ; 119: 125-139, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161185

RESUMO

This work explores the epicardial implantation of acellular chitosan hydrogels in two murine models of cardiomyopathy, focusing on their potential to restore the functional capacity of the heart. Different chitosan hydrogels were generated using polymers of four degrees of acetylation, ranging from 2.5% to 38%, because the degree of acetylation affects their degradation and biological activity. The hydrogels were adjusted to a 3% final polymer concentration. After complete macromolecular characterization of the chitosans and study of the mechanical properties of the resulting hydrogels, they were sutured onto the surface of the myocardium, first in rat after four-weeks of coronary ligation (n=58) then in mice with cardiomyopathy induced by a cardiac-specific invalidation of serum response factor (n=20). The implantation of the hydrogels was associated with a reversion of cardiac function loss with maximal effects for the acetylation degree of 24%. The extent of fibrosis, the cardiomyocyte length-to-width ratio, as well as the genes involved in fibrosis and stress were repressed after implantation. Our study demonstrated the beneficial effects of chitosan hydrogels, particularly with polymers of high degrees of acetylation, on cardiac remodeling in two cardiomyopathy models. Our findings indicate they have great potential as a reliable therapeutic approach to heart failure.


Assuntos
Quitosana , Insuficiência Cardíaca , Acetilação , Animais , Quitosana/farmacologia , Hidrogéis/farmacologia , Camundongos , Miocárdio/metabolismo , Ratos
5.
ACS Biomater Sci Eng ; 6(4): 2388-2400, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33455317

RESUMO

Many works focus on the use of polyesters such as poly(lactic acid) (PLA) to produce nanofibrous scaffolds for cardiac tissue engineering. However, such scaffolds are hydrophobic and difficult to functionalize. Here, we show that adding 30% of poly(glycerol sebacate) (PGS) elastomer within PLA leads to PLA:PGS scaffolds with improved biological properties, depending on the processing parameters. Two categories of fibers were produced by blend electrospinning, with diameters of 600 and 1300 nm. The resulting fibers were cured at 90 or 120 °C to achieve two different cross-linking densities. The designed scaffolds were considered for cytocompatibility, biocompatibility, biodegradability, and chemical and mechanical properties. Our results demonstrated that the presence of PGS increases the hydrophilicity of the material and thus improves surface functionalization by Matrigel or laminin coating, commonly used cell culture matrices. PLA:PGS scaffolds associated with Matrigel or laminin allow an increased material-cell interaction. Moreover, the cardiomyocytes seeded on such scaffolds acquire a morphology similar to that observed in native tissue, the result being more remarkable on fibers having the smallest diameter and the highest PGS cross-linking density. In addition, these scaffolds induce neovascularization without an inflammatory response and foreign body giant cell response after grafting on a mouse heart. Hence, the improved biocompatibility and the ability to support cardiomyocyte development suggest that thin PLA:PGS scaffolds could be promising biomaterials for cardiac application.


Assuntos
Elastômeros , Engenharia Tecidual , Animais , Decanoatos , Glicerol/análogos & derivados , Camundongos , Poliésteres , Polímeros , Alicerces Teciduais
6.
J Neurophysiol ; 106(4): 1793-805, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21734102

RESUMO

We examined the relationship between somatic Ca²âº signals and spiking activity of cerebellar molecular layer interneurons (MLIs) in adult mice. Using two-photon microscopy in conjunction with cell-attached recordings in slices, we show that in tonically firing MLIs loaded with high-affinity Ca²âº probes, Ca²âº-dependent fluorescence transients are absent. Spike-triggered averages of fluorescence traces for MLIs spiking at low rates revealed that the fluorescence change associated with an action potential is small (1% of the basal fluorescence). To uncover the relationship between intracellular Ca²âº concentration ([Ca²âº](i)) and firing rates, spikes were transiently silenced with puffs of the GABA(A) receptor agonist muscimol. [Ca²âº](i) relaxed toward basal levels following a single exponential whose amplitude correlated to the preceding spike frequency. The relaxation time constant was slow (2.5 s) and independent of the probe concentration. Data from parvalbumin (PV)-/- animals indicate that PV controls the amplitude and decay time of spike-triggered averages as well as the time course of [Ca²âº](i) relaxations following spike silencing. The [Ca²âº](i) signals were sensitive to the L-type Ca²âº channel blocker nimodipine and insensitive to ryanodine. In anesthetized mice, as in slices, fluorescence traces from most MLIs did not show spontaneous transients. They nonetheless responded to muscimol iontophoresis with relaxations similar to those obtained in vitro, suggesting a state of tonic firing with estimated spiking rates ranging from 2 to 30 Hz. Altogether, the [Ca²âº](i) signal appears to reflect the integral of the spiking activity in MLIs. We propose that the muscimol silencing strategy can be extended to other tonically spiking neurons with similar [Ca²âº](i) homeostasis.


Assuntos
Sinalização do Cálcio/fisiologia , Cerebelo/citologia , Interneurônios/fisiologia , Potenciais de Ação , Animais , Mapeamento Encefálico , Células Cultivadas/fisiologia , Cerebelo/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Corantes Fluorescentes , Interneurônios/efeitos dos fármacos , Iontoforese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muscimol/farmacologia , Parvalbuminas/deficiência , Parvalbuminas/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA