Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Soft Matter ; 18(10): 2039-2045, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35194630

RESUMO

Disordered-Network Mechanical Materials (DNMM), comprised of random arrangements of bonds and nodes, have emerged as mechanical metamaterials with the potential for achieving fine control over their mechanical properties. Recent computational studies have demonstrated this control whereby an extremely high degree of mechanical tunability can be achieved in disordered networks via a selective bond removal process called pruning. In this study, we experimentally demonstrate how pruning of a disordered network alters its macroscopic dynamic mechanical response and its capacity to mitigate impact. Impact studies with velocities ranging from 0.1 m s-1 to 1.5 m s-1 were performed, using a mechanical impactor and a drop tower, on 3D printed pruned and unpruned networks comprised of materials spanning a range of stiffness. High-speed videography was used to quantify the changes in Poisson's ratio for each of the network samples. Our results demonstrate that pruning is an efficient way to reduce the transmitted force and impulse from impact in the medium strain rate regime (101 s-1 to 102 s-1). This approach provides an interesting alternative route for designing materials with tailored impact mitigating properties compared to random material removal based on open cell foams.

2.
ACS Appl Mater Interfaces ; 12(15): 17881-17892, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32188240

RESUMO

The unique properties of hybrid organic-inorganic perovskites (HOIPs) promise to open doors to next-generation flexible optoelectronic devices. Before such advances are realized, a fundamental understanding of the mechanical properties of HOIPs is required. Here, we combine ab initio density functional theory (DFT) modeling with a diverse set of experiments to study the elastic properties of (quasi)2D HOIPs. Specifically, we focus on (quasi)2D single crystals of phenethylammonium methylammonium lead iodide, (PEA)2PbI4(MAPbI3)n-1, and their 3D counterpart, MAPbI3. We used nanoindentation (both Hertzian and Oliver-Pharr analyses) in combination with elastic buckling instability experiments to establish the out-of-plane and in-plane elastic moduli. The effect of Van der Waals (vdW) forces, different interlayer interactions, and finite temperature are combined with DFT calculations to accurately model the system. Our results reveal a nonmonotonic dependence of both the in-plane and out-of plane elastic moduli on the number of inorganic layers (n) rationalized by first-principles calculations. We discuss how the presence of defects in as-grown crystals and macroscopic interlayer deformations affect the mechanical response of (quasi)2D HOIPs. Comparing the in- and out-of-plane experimental results with the theory reveals that perturbations to the covalent and ionic bonds (which hold a 2D layer together) is responsible for the relative out-of-plane stiffness of these materials. In contrast, we conjecture that the in-plane softness originates from macroscopic or mesoscopic motions between 2D layers during buckling experiments. Additionally, we learn how dispersion and π interactions in organic bilayers can have a determining role in the elastic response of the materials, especially in the out-of-plane direction. The understanding gained by comparing ab initio and experimental techniques paves the way for rational design of layered HOIPs with mechanical properties favorable for strain-intensive applications. Combined with filters for other favorable criteria, e.g., thermal or moisture stability, one can systematically screen viable (quasi)2D HOIPs for a variety of flexible optoelectronic applications.

3.
Adv Mater ; 29(24)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28464367

RESUMO

The ease of processing hybrid organic-inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3 , from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time- and rate-dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop-in events and slip bands on the surface of the indented crystals demonstrate dislocation-mediated plastic deformation. The magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A-site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. This contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations.

4.
Adv Mater ; 28(45): 10095-10102, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27717022

RESUMO

A novel photopatternable high-k fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant (k) between 8 and 11 is demonstrated in thin-film transistors. Crosslinking P(VDF-BTFE) reduces energetic disorder at the dielectric-semiconductor interface by controlling the chain conformations of P(VDF-BTFE), thereby leading to approximately a threefold enhancement in the charge mobility of rubrene single-crystal field-effect transistors.

5.
Nat Commun ; 6: 6948, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25939864

RESUMO

With the impending surge of flexible organic electronic technologies, it has become essential to understand how mechanical deformation affects the electrical performance of organic thin-film devices. Organic single crystals are ideal for the systematic study of strain effects on electrical properties without being concerned about grain boundaries and other defects. Here we investigate how the deformation affects the field-effect mobility of single crystals of the benchmark semiconductor rubrene. The wrinkling instability is used to apply local strains of different magnitudes along the conducting channel in field-effect transistors. We discover that the mobility changes as dictated by the net strain at the dielectric/semiconductor interface. We propose a model based on the plate bending theory to quantify the net strain in wrinkled transistors and predict the change in mobility. These contributions represent a significant step forward in structure-function relationships in organic semiconductors, critical for the development of the next generation of flexible electronic devices.

6.
ACS Appl Mater Interfaces ; 6(10): 7705-11, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24735371

RESUMO

Poly(3-hexylthiophene)-block-poly(3-(3-thioacetylpropyl) oxymethylthiophene) (P3HT)-b-(P3TT) diblock copolymers were synthesized and manipulated by solvent-induced crystallization to afford reversibly cross-linked semiconductor nanowires. To cross-link the nanowires, we deprotected the thioacetate groups to thiols and they subsequently oxidized to disulfides. Cross-linked nanowires maintained their structural integrity in solvents that normally dissolve the polymers. These robust nanowires could be reduced to the fully solvated polymer, representing a novel, reversible cross-linking procedure for functional P3HT-based nanowire fibrils. Field-effect transistor measurements were carried out to determine the charge transport properties of these nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA