Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372601

RESUMO

Meat is an important part of the food pyramid in Mexico, to such an extent that it is included in the basic food basket. In recent years, there has been great interest in the application of so-called emerging technologies, such as high-intensity ultrasound (HIU), to modify the characteristics of meat and meat products. The advantages of the HIU in meat such as pH, increased water-holding capacity, and antimicrobial activity are well documented and conclusive. However, in terms of meat tenderization, the results are confusing and contradictory, mainly when they focus on three HIU parameters: acoustic intensity, frequency, and application time. This study explores via a texturometer the effect of HIU-generated acoustic cavitation and ultrasonoporation in beef (m. Longissimus dorsi). Loin-steak was ultrasonicated with the following parameters: time tHIU = 30 min/each side; frequency fHIU = 37 kHz; acoustic intensity IHIU = ~6, 7, 16, 28, and 90 W/cm2. The results showed that acoustic cavitation has a chaotic effect on the loin-steak surface and thickness of the rib-eye due to Bjerknes force, generating shear stress waves, and acoustic radiation transmittance via the internal structure of the meat and the modification of the myofibrils, in addition to the collateral effect in which the collagen and pH generated ultrasonoporation. This means that HIU can be beneficial for the tenderization of meat.

2.
Foods ; 9(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218106

RESUMO

Milk and dairy products have a major role in human nutrition, as they contribute essential nutrients for child development. The nutritional properties of dairy products are maintained despite applying traditional processing techniques. Nowadays, so-called emerging technologies have also been implemented for food manufacture and preservation purposes. Low- and high-intensity ultrasounds are among these technologies. Low-intensity ultrasounds have been used to determine, analyze and characterize the physical characteristics of foods, while high-intensity ultrasounds are applied to accelerate particular biological, physical and chemical processes during food product handling and transformation. The objective of this review is to explain the phenomenology of ultrasounds and to detail the differences between low and high-intensity ultrasounds, as well as to present the advantages and disadvantages of each one in terms of the processing, quality and preservation of milk and dairy products. Additionally, it reviews the rheological, physicochemical and microbiological applications in dairy products, such as raw milk, cream, yogurt, butter, ice cream and cheese. Finally, it explains some methodologies for the generation of emulsions, homogenates, crystallization, etc. Currently, low and high-intensity ultrasounds are an active field of study, and they might be promising tools in the dairy industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA