Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 8(1): 25, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131898

RESUMO

Insoluble intracellular aggregation of tau proteins into filaments and neurodegeneration are histopathological hallmarks of Alzheimer disease (AD) and other tauopathies. Recently, prefibrillar, soluble, oligomeric tau intermediates have emerged as relevant pathological tau species; however, the molecular mechanisms of neuronal responses to tau oligomers are not fully understood. Here, we show that hippocampal neurons in six-month-old transgenic mouse model of tauopathy, THY-Tau22, are enriched with oligomeric tau, contain elongated mitochondria, and display cellular stress, but no overt cytotoxicity compared to the control mice. The levels of several key mitochondrial proteins were markedly different between the THY-Tau22 and control mice hippocampi including the mitochondrial SIRT3, PINK1, ANT1 and the fission protein DRP1. DNA base excision repair (BER) is the primary defense system against oxidative DNA damage and it was elevated in six-month-old transgenic mice. DNA polymerase ß, the key BER DNA polymerase, was enriched in the cytoplasm of hippocampal neurons in six-month-old transgenic mice and localized with and within mitochondria. Polß also co-localized with mitochondria in human AD brains in neurons containing oligomeric tau. Most of these altered mitochondrial and DNA repair events were specific to the transgenic mice at 6 months of age and were not different from control mice at 12 months of age when tau pathology reaches its maximum and oligomeric forms of tau are no longer detectable. In summary, our data suggests that we have identified key cellular stress responses at early stages of tau pathology to preserve neuronal integrity and to promote survival. To our knowledge, this work provides the first description of multiple stress responses involving mitochondrial homeostasis and BER early during the progression of tau pathology, and represents an important advance in the etiopathogenesis of tauopathies.


Assuntos
Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Proteínas tau/metabolismo , Translocador 1 do Nucleotídeo Adenina/metabolismo , Idoso , Animais , Dano ao DNA , DNA Polimerase beta/metabolismo , Reparo do DNA , Modelos Animais de Doenças , Dinaminas/metabolismo , Lobo Frontal/citologia , Lobo Frontal/metabolismo , Hipocampo/citologia , Homeostase , Humanos , Masculino , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Emaranhados Neurofibrilares , Neurônios/ultraestrutura , Proteínas Quinases/metabolismo , Sirtuína 3/metabolismo , Proteínas tau/genética
2.
Toxins (Basel) ; 11(9)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487908

RESUMO

Pain currently represents the most common symptom for which medical attention is sought by patients. The available treatments have limited effectiveness and significant side-effects. In addition, most often, the duration of analgesia is short. Today, the handling of pain remains a major challenge. One promising alternative for the discovery of novel potent analgesics is to take inspiration from Mother Nature; in this context, the detailed investigation of the intriguing analgesia implemented in Buruli ulcer, an infectious disease caused by the bacterium Mycobacterium ulcerans and characterized by painless ulcerative lesions, seems particularly promising. More precisely, in this disease, the painless skin ulcers are caused by mycolactone, a polyketide lactone exotoxin. In fact, mycolactone exerts a wide range of effects on the host, besides being responsible for analgesia, as it has been shown notably to modulate the immune response or to provoke apoptosis. Several cellular mechanisms and different targets have been proposed to account for the analgesic effect of the toxin, such as nerve degeneration, the inhibition of inflammatory mediators and the activation of angiotensin II receptor 2. In this review, we discuss the current knowledge in the field, highlighting possible controversies. We first discuss the different pain-mimicking experimental models that were used to study the effect of mycolactone. We then detail the different variants of mycolactone that were used in such models. Overall, based on the results and the discussions, we conclude that the development of mycolactone-derived molecules can represent very promising perspectives for new analgesic drugs, which could be effective for specific pain indications.


Assuntos
Analgésicos/uso terapêutico , Macrolídeos/uso terapêutico , Dor/tratamento farmacológico , Animais , Humanos
3.
Front Mol Neurosci ; 12: 89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118884

RESUMO

Stress and the circadian systems play a major role in an organism's adaptation to environmental changes. The adaptive value of the stress system is reactive while that of the circadian system is predictive. Dysfunctions in these two systems may account for many clinically relevant disorders. Despite the evidence that interindividual differences in stress sensitivity and in the functioning of the circadian system are related, there is limited integrated research on these topics. Moreover, sex differences in these systems are poorly investigated. We used the perinatal stress (PRS) rat model, a well-characterized model of maladaptive programming of reactive and predictive adaptation, to monitor the running wheel behavior in male and female adult PRS rats, under a normal light/dark cycle as well as in response to a chronobiological stressor (6-h phase advance/shift). We then analyzed across different time points the expression of genes involved in circadian clocks, stress response, signaling, and glucose metabolism regulation in the suprachiasmatic nucleus (SCN). In the unstressed control group, we found a sex-specific profile that was either enhanced or inverted by PRS. Also, PRS disrupted circadian wheel-running behavior by inducing a phase advance in the activity of males and hypoactivity in females and increased vulnerability to chronobiological stress in both sexes. We also observed oscillations of several genes in the SCN of the unstressed group in both sexes. PRS affected males to greater extent than females, with PRS males displaying a pattern similar to unstressed females. Altogether, our findings provide evidence for a specific profile of dysmasculinization induced by PRS at the behavioral and molecular level, thus advocating the necessity to include sex as a biological variable to study the set-up of circadian system in animal models.

4.
Front Pharmacol ; 10: 378, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031626

RESUMO

Mycobacterium ulcerans is the bacillus responsible for Buruli ulcer, an infectious disease and the third most important mycobacterial disease worldwide, after tuberculosis and leprosy. M. ulcerans infection is a type of panniculitis beginning mostly with a nodule or an oedema, which can progress to large ulcerative lesions. The lesions are caused by mycolactone, the polyketide toxin of M. ulcerans. Mycolactone plays a central role for host colonization as it has immunomodulatory and analgesic effects. On one hand, mycolactone induces analgesia by targeting type-2 angiotensin II receptors (AT2R), causing cellular hyperpolarization and neuron desensitization. Indeed, a single subcutaneous injection of mycolactone into the mouse footpad induces a long-lasting hypoesthesia up to 48 h. It was suggested that the long-lasting hypoesthesia may result from the persistence of a significant amount of mycolactone locally following its injection, which could be probably due to its slow elimination from tissues. To verify this hypothesis, we investigated the correlation between hypoesthesia and mycolactone bioavailability directly at the tissue level. Various quantities of mycolactone were then injected in mouse tissue and hypoesthesia was recorded with nociception assays over a period of 48 h. The hypoesthesia was maximal 6 h after the injection of 4 µg mycolactone. The basal state was reached 48 h after injection, which demonstrated the absence of nerve damage. Surprisingly, mycolactone levels decreased strongly during the first hours with a reduction of 70 and 90% after 4 and 10 h, respectively. Also, mycolactone did not diffuse in neighboring skin tissue and only poorly into the bloodstream upon direct injection. Nevertheless, the remaining amount was sufficient to induce hypoesthesia during 24 h. Our results thus demonstrate that intact mycolactone is rapidly eliminated and that very small amounts of mycolactone are sufficient to induce hypoesthesia. Taken together, our study points out that mycolactone ought to be considered as a promising analgesic.

5.
Neuroscience ; 342: 232-251, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-27235745

RESUMO

In mammals, early adverse experiences, including mother-pup interactions, shape the response of an individual to chronic stress or to stress-related diseases during adult life. This has led to the elaboration of the theory of the developmental origins of health and disease, in particular adult diseases such as cardiovascular and metabolic disorders. In addition, in humans, as stated by Massimo Fagioli's Human Birth Theory, birth is healthy and equal for all individuals, so that mental illness develop exclusively in the postnatal period because of the quality of the relationship in the first year of life. Thus, this review focuses on the importance of programming during the early developmental period on the manifestation of adult diseases in both animal models and humans. Considering the obvious differences between animals and humans we cannot systematically move from animal models to humans. Consequently, in the first part of this review, we will discuss how animal models can be used to dissect the influence of adverse events occurring during the prenatal and postnatal periods on the developmental trajectories of the offspring, and in the second part, we will discuss the role of postnatal critical periods on the development of mental diseases in humans. Epigenetic mechanisms that cause reversible modifications in gene expression, driving the development of a pathological phenotype in response to a negative early postnatal environment, may lie at the core of this programming, thereby providing potential new therapeutic targets. The concept of the Human Birth Theory leads to a comprehension of the mental illness as a pathology of the human relationship immediately after birth and during the first year of life.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Transtornos Mentais/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Epigênese Genética , Humanos , Transtornos Mentais/genética , Modelos Biológicos , Estresse Psicológico/genética
6.
Addict Biol ; 21(6): 1072-1085, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26011513

RESUMO

Palatable food is a strong activator of the reward circuitry and may cause addictive behavior leading to eating disorders. How early life events and sex interact in shaping hedonic sensitivity to palatable food is largely unknown. We used prenatally restraint stressed (PRS) rats, which show abnormalities in the reward system and anxious/depressive-like behavior. Some of the hallmarks of PRS rats are known to be sex-dependent. We report that PRS enhanced and reduced milk chocolate-induced conditioned place preference in males and females, respectively. Male PRS rats also show increases in plasma dihydrotestosterone (DHT) levels and dopamine (DA) levels in the nucleus accumbens (NAc), and reductions in 5-hydroxytryptamine (5-HT) levels in the NAc and prefrontal cortex (PFC). In male rats, systemic treatment with the DHT-lowering drug finasteride reduced both milk chocolate preference and NAc DA levels. Female PRS rats showed lower plasma estradiol (E2 ) levels and lower DA levels in the NAc, and 5-HT levels in the NAc and PFC. E2 supplementation reversed the reduction in milk chocolate preference and PFC 5-HT levels. In the hypothalamus, PRS increased ERα and ERß estrogen receptor and CARTP (cocaine-and-amphetamine receptor transcript peptide) mRNA levels in males, and 5-HT2C receptor mRNA levels in females. Changes were corrected by treatments with finasteride and E2 , respectively. These new findings show that early life stress has a profound impact on hedonic sensitivity to high-palatable food via long-lasting changes in gonadal hormones. This paves the way to the development of hormonal strategies aimed at correcting abnormalities in the response to natural rewards.


Assuntos
Preferências Alimentares/fisiologia , Recompensa , Estresse Psicológico/psicologia , Análise de Variância , Animais , Monoaminas Biogênicas/metabolismo , Encéfalo/metabolismo , Di-Hidrotestosterona/metabolismo , Dopamina/metabolismo , Feminino , Finasterida/farmacologia , Hipotálamo/metabolismo , Masculino , Córtex Pré-Frontal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Restrição Física/psicologia , Serotonina/metabolismo , Fatores Sexuais
7.
Psychoneuroendocrinology ; 62: 36-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26231445

RESUMO

Oxytocin receptors are known to modulate synaptic transmission and network activity in the hippocampus, but their precise function has been only partially elucidated. Here, we have found that activation of presynaptic oxytocin receptor with the potent agonist, carbetocin, enhanced depolarization-evoked glutamate release in the ventral hippocampus with no effect on GABA release. This evidence paved the way for examining the effect of carbetocin treatment in "prenatally restraint stressed" (PRS) rats, i.e., the offspring of dams exposed to repeated episodes of restraint stress during pregnancy. Adult PRS rats exhibit an anxious/depressive-like phenotype associated with an abnormal glucocorticoid feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis, and, remarkably, with a reduced depolarization-evoked glutamate release in the ventral hippocampus. Chronic systemic treatment with carbetocin (1mg/kg, i.p., once a day for 2-3 weeks) in PRS rats corrected the defect in glutamate release, anxiety- and depressive-like behavior, and abnormalities in social behavior, in the HPA response to stress, and in the expression of stress-related genes in the hippocampus and amygdala. Of note, carbetocin treatment had no effect on these behavioral and neuroendocrine parameters in prenatally unstressed (control) rats, with the exception of a reduced expression of the oxytocin receptor gene in the amygdala. These findings disclose a novel function of oxytocin receptors in the hippocampus, and encourage the use of oxytocin receptor agonists in the treatment of stress-related psychiatric disorders in adult life.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Ocitocina/análogos & derivados , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Receptores de Ocitocina/agonistas , Estresse Psicológico/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Feminino , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Ocitocina/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Pré-Sinápticos/metabolismo , Restrição Física , Comportamento Social
8.
Adv Neurobiol ; 10: 27-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25287534

RESUMO

Prenatal restraint stress (PRS) can induce persisting changes in individual's development. PRS increases anxiety and depression-like behaviors and induces changes in the hypothalamo-pituitary-adrenal (HPA) axis in adult PRS rats after exposure to stress. Since adaptive capabilities also depend on temporal organization and synchronization with the external environment, we studied the effects of PRS on circadian rhythms, including the sleep-wake cycle, that are parameters altered in depression. Using a restraint stress during gestation, we showed that PRS induced phase advances in hormonal/behavioral circadian rhythms in adult rats, and an increase in the amount of paradoxical sleep, positively correlated to plasma corticosterone levels. Plasma corticosterone levels were also correlated with immobility in the forced swimming test, indicating a depressive-like profile in the PRS rats. We observed comorbidity with anxiety-like profile on PRS rats that was correlated with a reduced release of glutamate in the ventral hippocampus. Pharmacological approaches aimed at modulating glutamate release may represent a novel therapeutic strategy to treat stress-related disorders. Finally, since depressed patients exhibit changes in HPA axis activity and in circadian rhythmicity as well as in the paradoxical sleep regulation, we suggest that PRS could represent an original animal model of depression.

9.
Adv Neurobiol ; 10: 101-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25287538

RESUMO

Stress-related events that occur in the perinatal period can permanently change brain and behavior of the developing individual and there is increasing evidence that early-life adversity is a contributing factor in the etiology of drug abuse and mood disorders. Neural adaptations resulting from early-life stress may mediate individual differences in novelty responsiveness and in turn contribute to drug abuse vulnerability. Prenatal restraint stress (PRS) in rats is a well-documented model of early stress known to induce long-lasting neurobiological and behavioral alterations including impaired feedback mechanisms of the HPA axis, enhanced novelty seeking, and increased sensitiveness to psychostimulants as well as anxiety/depression-like behavior. Together with the HPA axis, functional alterations of the mesolimbic dopamine system and of the metabotropic glutamate receptors system appear to be involved in the addiction-like profile of PRS rats.

10.
J Neurosci ; 34(6): 2015-24, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24501344

RESUMO

Abnormalities of synaptic transmission in the hippocampus represent an integral part of the altered programming triggered by early life stress, which enhances the vulnerability to stress-related disorders in the adult life. Rats exposed to prenatal restraint stress (PRS) develop enduring biochemical and behavioral changes characteristic of an anxious/depressive-like phenotype. Most neurochemical abnormalities in PRS rats are found in the ventral hippocampus, a region that encodes memories related to stress and emotions. We have recently demonstrated a causal link between the reduction of glutamate release in the ventral hippocampus and anxiety-like behavior in PRS rats. To confer pharmacological validity to the glutamatergic hypothesis of stress-related disorders, we examined whether chronic treatment with two antidepressants with different mechanisms of action could correct the defect in glutamate release and associated behavioral abnormalities in PRS rats. Adult unstressed or PRS rats were treated daily with either agomelatine (40 mg/kg, i.p.) or fluoxetine (5 mg/kg, i.p.) for 21 d. Both treatments reversed the reduction in depolarization-evoked glutamate release and in the expression of synaptic vesicle-associated proteins in the ventral hippocampus of PRS rats. Antidepressant treatment also corrected abnormalities in anxiety-/depression-like behavior and social memory performance in PRS rats. The effect on glutamate release was strongly correlated with the improvement of anxiety-like behavior and social memory. These data offer the pharmacological demonstration that glutamatergic hypofunction in the ventral hippocampus lies at the core of the pathological phenotype caused by early life stress and represents an attractive pharmacological target for novel therapeutic strategies.


Assuntos
Antidepressivos/uso terapêutico , Ácido Glutâmico/metabolismo , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/psicologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/psicologia , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/psicologia , Resultado do Tratamento
11.
J Antimicrob Chemother ; 63(3): 458-61, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19153080

RESUMO

OBJECTIVES: The aim was to compare the in vitro effects of amoxicillin and ampicillin on the oxidative metabolism of polymorphonuclear neutrophils (PMNs). METHODS: Superoxide radical anion production by PMNs, stimulated or not by various exogenous stimulants and in contact with increasing antibiotic concentrations, was measured using spectrophotometric methods. RESULTS: Whereas a pro-oxidative action of amoxicillin on PMNs was obtained without exogenous stimulation or with opsonized zymosan (OZ), the O(2)(-) production by PMNs incubated with ampicillin did not increase significantly. CONCLUSIONS: This amoxicillin pro-oxidative effect could be due to the activation of the PMN NADPH oxidase, to its induction by a membrane effect or via the OZ pathway. It probably reinforces amoxicillin intrinsic bactericidal action and might partly explain the severe rashes sometimes occurring with amoxicillin treatment.


Assuntos
Amoxicilina/farmacologia , Ampicilina/farmacologia , Fatores Imunológicos/farmacologia , Neutrófilos/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos , Humanos , NADPH Oxidases/metabolismo , Espectrofotometria/métodos , Superóxidos/metabolismo
12.
Phytother Res ; 23(6): 892-5, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19107738

RESUMO

Microdesmis keayana (Pandaceae) is an African tropical plant whose roots are used in traditional medicine for erection impairment but the compounds responsible for its action are unknown. Two major alkaloids recently isolated from the roots of M. keayana, keayanidine B and keayanine, were tested for vasorelaxing properties using isolated rat aortic rings precontracted by phenylephrine to confirm its traditional use. Influence of the alkaloids on the endothelial production of endothelial nitric oxide synthase (eNOS) was measured by quantitative polymerase chain reaction (QPCR) analysis. Scavenging activities were assessed versus 1,1-diphenyl-2-picrylhydrazyle (DPPH) and reactive oxygen species (ROS) such as superoxide anion (O(2)(*-) and hydrogen peroxide (H(2)O(2)) in cell-free and cellular systems. The results showed that keayanidine B and keayanine had significant vasorelaxing properties. This effect could be due to their strong antioxidant activity versus O(2)(*-) and H(2)O(2) and to their stimulation of eNOS mRNA expression. Therefore these alkaloids could indirectly stimulate NO production in the vascular bed and would explain the traditional use of M. keayana in erectile dysfunction.


Assuntos
Alcaloides/farmacologia , Ácidos Cumáricos/farmacologia , Disfunção Erétil/tratamento farmacológico , Extratos Vegetais/farmacologia , Espermidina/análogos & derivados , Animais , Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Bovinos , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Magnoliopsida/química , Masculino , Estrutura Molecular , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Espermidina/farmacologia , Superóxidos/metabolismo , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA