Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(18): e202303994, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38323675

RESUMO

Immobilization of stimulus-responsive systems on solid surfaces is beneficial for controlled signal transmission and adaptive behavior while allowing the characterization of the functional interface with high sensitivity and high spatial resolution. Positioning of the stimuli-responsive units with nanometer-scale precision across the adaptive surface remains one of the bottlenecks in the extraction of cooperative function. Nanoscale organization, cooperativity, and amplification remain key challenges in bridging the molecular and the macroscopic worlds. Here we report on the design, synthesis, and scanning tunneling microscopy (STM) characterization of overcrowded alkene photoswitches merged in self-assembled networks physisorbed at the solid-liquid interface. A detailed anchoring strategy that ensures appropriate orientation of the switches with respect to the solid surface through the use of bis-urea groups is presented. We implement a co-assembly strategy that enables the merging of the photoswitches within physisorbed monolayers of structurally similar 'spacer' molecules. The self-assembly of the individual components and the co-assemblies was examined in detail using (sub)molecular resolution STM which confirms the robust immobilization and controlled orientation of the photoswitches within the spacer monolayers. The experimental STM data is supported by detailed molecular mechanics (MM) simulations. Different designs of the switches and the spacers were investigated which allowed us to formulate guidelines that enable the precise organization of the photoswitches in crystalline physisorbed self-assembled molecular networks.

2.
Chemistry ; 30(8): e202303107, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38009432

RESUMO

Here, we report on the synthesis of discrete oligomers of alkyl-bridged naphthalenediimides (NDIs) and study their molecular nanostructures both in bulk, in solution, and at the liquid-solid interface. Via an iterative synthesis method, multiple NDI cores were bridged with short and saturated alkyl-diamines (C3 and C12 ) or long and unsaturated alkyl-diamines (u2 C33 to u8 C100 ) at their imide termini. The strong intermolecular interaction between the NDI cores was observed by probing their photophysical properties in solution. In bulk, the discrete NDI oligomers preferentially ordered in lamellar morphologies, irrespective of whether a saturated or unsaturated spacer was employed. Moreover, both the molecular architecture as well as the crystallization conditions play a significant role in the nanoscale ordering. The long unsaturated alkyl chains lead preferably to folded-chain conformations while their saturated analogues form stretched arrangements. At the solution-solid interface, well-defined lamellar regions were observed. These results show that precision in chemical structure alone is not sufficient to reach well-defined structures of discrete oligomers, but that it must be combined with precision in processing conditions.

3.
Beilstein J Nanotechnol ; 11: 1291-1302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953373

RESUMO

Structural polymorphism is ubiquitous in physisorbed self-assembled monolayers formed at the solution-solid interface. One of the ways to influence network formation at this interface is to physically decouple the self-assembled monolayer from the underlying substrate thereby removing the influence of the substrate lattice, if any. Here we show a systematic exploration of self-assembly of a typical building block, namely 4-tetradecyloxybenzoic acid at the 1-phenyloctane-graphite interface in the presence and in the absence of a buffer layer formed by a long chain alkane, namely n-pentacontane. Using scanning tunneling microscopy (STM), three different structural polymorphs were identified for 4-tetradecyloxybenzoic acid at the 1-phenyloctane-graphite interface. Surprisingly, the same three structures were formed on top of the buffer layer, albeit at different concentrations. Systematic variation of experimental parameters did not lead to any new network in the presence of the buffer layer. We discovered that the self-assembly on top of the buffer layer allows better control over the nanoscale manipulation of the self-assembled networks. Using the influence of the STM tip, we could initiate the nucleation of small isolated domains of the benzoic acid on-command in a reproducible fashion. Such controlled nucleation experiments hold promise for studying fundamental processes inherent to the assembly process on surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA