RESUMO
INTRODUCTION: Fetal myelomeningocele (MMC) repair improves lower extremity motor function. We have previously demonstrated that augmentation of fetal MMC repair with placental mesenchymal stromal cells (PMSCs) seeded on extracellular matrix (PMSC-ECM) further improves motor function in the ovine model. However, little progress has been made in improving bowel and bladder function, with many patients suffering from neurogenic bowel and bladder. We hypothesized that fetal MMC repair with PMSC-ECM would also improve bowel and bladder function. METHODS: MMC defects were surgically created in twelve ovine fetuses at median gestational age (GA) 73 days, followed by defect repair at GA101 with PMSC-ECM. Fetuses were delivered at GA141. Primary bladder function outcomes were voiding posture and void volumes. Primary bowel function outcome was anorectal manometry findings including resting anal pressure and presence of rectoanal inhibitory reflex (RAIR). Secondary outcomes were anorectal and bladder detrusor muscle thickness. PMSC-ECM lambs were compared to normal lambs (n = 3). RESULTS: Eighty percent of PMSC-ECM lambs displayed normal voiding posture compared to 100% of normal lambs (p = 1). Void volumes were similar (PMSC-ECM 6.1 ml/kg vs. normal 8.8 ml/kg, p = 0.4). Resting mean anal pressures were similar between cohorts (27.0 mmHg PMSC-ECM vs. normal 23.5 mmHg, p = 0.57). RAIR was present in 3/5 PMSC-ECM lambs that underwent anorectal manometry and all normal lambs (p = 0.46). Thicknesses of anal sphincter complex, rectal wall muscles, and bladder detrusor muscles were similar between cohorts. CONCLUSION: Ovine fetal MMC repair augmented with PMSC-ECM results in near-normal bowel and bladder function. Further work is needed to evaluate these outcomes in human patients.
Assuntos
Meningomielocele , Células-Tronco Mesenquimais , Animais , Feminino , Feto/cirurgia , Humanos , Meningomielocele/complicações , Meningomielocele/cirurgia , Placenta , Gravidez , Ovinos , Carneiro Doméstico , Bexiga Urinária/cirurgiaRESUMO
BACKGROUND: While fetal repair of myelomeningocele (MMC) revolutionized management, many children are still unable to walk independently. Preclinical studies demonstrated that research-grade placental mesenchymal stromal cells (PMSCs) prevent paralysis in fetal ovine MMC, however this had not been replicated with clinical-grade cells that could be used in an upcoming human clinical trial. We tested clinical-grade PMSCs seeded on an extracellular matrix (PMSC-ECM) in the gold standard fetal ovine model of MMC. METHODS: Thirty-five ovine fetuses underwent MMC defect creation at a median of 76 days gestational age, and defect repair at 101 days gestational age with application of clinical-grade PMSC-ECM (3 × 105 cells/cm2, n = 12 fetuses), research-grade PMSC-ECM (3 × 105 cells/cm2, three cell lines with n = 6 (Group 1), n = 6 (Group 2), and n = 3 (Group 3) fetuses, respectively) or ECM without PMSCs (n = 8 fetuses). Three normal lambs underwent no surgical interventions. The primary outcome was motor function measured by the Sheep Locomotor Rating scale (SLR, range 0: complete paralysis to 15: normal ambulation) at 24 h of life. Correlation of lumbar spine large neuron density with SLR was evaluated. RESULTS: Clinical-grade PMSC-ECM lambs had significantly better motor function than ECM-only lambs (SLR 14.5 vs. 6.5, p = 0.04) and were similar to normal lambs (14.5 vs. 15, p = 0.2) and research-grade PMSC-ECM lambs (Group 1: 14.5 vs. 15, p = 0.63; Group 2: 14.5 vs. 14.5, p = 0.86; Group 3: 14.5 vs. 15, p = 0.50). Lumbar spine large neuron density was strongly correlated with motor function (r = 0.753, p<0.001). CONCLUSIONS: Clinical-grade placental mesenchymal stromal cells seeded on an extracellular matrix rescued ambulation in a fetal ovine myelomeningocele model. Lumbar spine large neuron density correlated with motor function, suggesting a neuroprotective effect of the PMSC-ECM in prevention of paralysis. A first-in-human clinical trial of PMSCs in human fetal myelomeningocele repair is underway.
Assuntos
Meningomielocele , Células-Tronco Mesenquimais , Animais , Feminino , Feto/cirurgia , Idade Gestacional , Humanos , Meningomielocele/cirurgia , Placenta , Gravidez , OvinosRESUMO
PURPOSE: Augmentation of in utero myelomeningocele repair with human placental mesenchymal stromal cells seeded onto extracellular matrix (PMSC-ECM) improves motor outcomes in an ovine myelomeningocele model. This study evaluated the safety of PMSC-ECM application directly onto the fetal spinal cord in preparation for a clinical trial. METHODS: Laminectomy of L5-L6 with PMSC-ECM placement directly onto the spinal cord was performed in five fetal lambs at gestational age (GA) 100-106 days. Lambs and ewes were monitored for three months following delivery. Lambs underwent magnetic resonance imaging (MRI) of the brain and spine at birth and at three months. All organs from lambs and uteri from ewes underwent histologic evaluation. Lamb spinal cords and brains and ewe placentas were evaluated for persistence of PMSCs by polymerase chain reaction for presence of human DNA. RESULTS: MRIs demonstrated no evidence of abnormal tissue growth or spinal cord tethering. Histological analysis demonstrated no evidence of abnormal tissue growth or treatment related adverse effects. No human DNA was identified in evaluated tissues. CONCLUSION: There was no evidence of abnormal tissue growth or PMSC persistence at three months following in utero application of PMSC-ECM to the spinal cord. This supports proceeding with clinical trials of PMSC-ECM for in utero myelomeningocele repair. LEVEL OF EVIDENCE: N/A TYPE OF STUDY: Basic science.
Assuntos
Meningomielocele , Células-Tronco Mesenquimais , Animais , Feminino , Humanos , Meningomielocele/cirurgia , Placenta , Gravidez , Ovinos , Carneiro Doméstico , ÚteroRESUMO
BACKGROUND: Myelomeningocele (MMC) is the congenital failure of neural tube closure in utero, for which the standard of care is prenatal surgical repair. We developed clinical-grade placental mesenchymal stromal cells seeded on a dural extracellular matrix (PMSC-ECM), which have been shown to improve motor outcomes in preclinical ovine models. To evaluate the long-term safety of this product prior to use in a clinical trial, we conducted safety testing in a murine model. METHODS: Clinical grade PMSCs obtained from donor human placentas were seeded onto a 6 mm diameter ECM at a density of 3 × 105 cells/cm2. Immunodeficient mice were randomized to receive either an ECM only or PMSC-ECM administered into a subcutaneous pocket. Mice were monitored for tumor formation until two study endpoints: 4 wk and 6 mo. Pathology and histology on all tissues was performed to evaluate for tumors. Quantitative polymerase chain reaction (qPCR) was performed to evaluate for the presence of human DNA, which would indicate persistence of PMSCs. RESULTS: Fifty-four mice were included; 13 received ECM only and 14 received PMSC-ECM in both the 4-wk and 6-mo groups. No mice had gross or microscopic evidence of tumor development. A nodular focus of mature fibrous connective tissue was identified at the subcutaneous implantation pocket in the majority of mice with no significant difference between ECM only and PMSC-ECM groups (P = 0.32 at 4 wk, P > 0.99 at 6 mo). Additionally, no human DNA was detected by qPCR in any mice at either time point. CONCLUSIONS: Subcutaneous implantation of the PMSC-ECM product did not result in tumor formation and we found no evidence that PMSCs persisted. These results support the safety of the PMSC-ECM product for use in a Phase 1/2a human clinical trial evaluating fetal MMC repair augmented with PMSC-ECM.
Assuntos
Meningomielocele , Células-Tronco Mesenquimais , Animais , Matriz Extracelular/patologia , Feminino , Feto/cirurgia , Meningomielocele/cirurgia , Camundongos , Placenta , GravidezRESUMO
Prenatal stem cell-based regenerative therapies have progressed substantially and have been demonstrated as effective treatment options for fetal diseases that were previously deemed untreatable. Due to immunoregulatory properties, self-renewal capacity, and multilineage potential, autologous human placental chorionic villus-derived mesenchymal stromal cells (CV-MSCs) are an attractive cell source for fetal regenerative therapies. However, as a general issue for MSC transplantation, the poor survival and engraftment is a major challenge of the application of MSCs. Particularly for the fetal transplantation of CV-MSCs in the naturally hypoxic fetal environment, improving the survival and engraftment of CV-MSCs is critically important. Hypoxic preconditioning (HP) is an effective priming approach to protect stem cells from ischemic damage. In this study, we developed an optimal HP protocol to enhance the survival and proangiogenic capacity of CV-MSCs for improving clinical outcomes in fetal applications. Total cell number, DNA quantification, nuclear area test, and cell viability test showed HP significantly protected CV-MSCs from ischemic damage. Flow cytometry analysis confirmed HP did not alter the immunophenotype of CV-MSCs. Caspase-3, MTS, and Western blot analysis showed HP significantly reduced the apoptosis of CV-MSCs under ischemic stimulus via the activation of the AKT signaling pathway that was related to cell survival. ELISA results showed HP significantly enhanced the secretion of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) by CV-MSCs under an ischemic stimulus. We also found that the environmental nutrition level was critical for the release of brain-derived neurotrophic factor (BDNF). The angiogenesis assay results showed HP-primed CV-MSCs could significantly enhance endothelial cell (EC) proliferation, migration, and tube formation. Consequently, HP is a promising strategy to increase the tolerance of CV-MSCs to ischemia and improve their therapeutic efficacy in fetal clinical applications.
RESUMO
BACKGROUND: Hemophilia A (HA) is an X-linked recessive disorder caused by mutations in the Factor VIII (FVIII) gene leading to deficient blood coagulation. As a monogenic disorder, HA is an ideal target for cell-based gene therapy, but successful treatment has been hampered by insufficient engraftment of potential therapeutic cells. METHODS: In this study, we sought to determine whether co-transplantation of endothelial colony-forming cells (ECFCs) and placenta-derived mesenchymal stromal cells (PMSCs) can achieve long-term engraftment and FVIII expression. ECFCs and PMSCs were transduced with a B domain deleted factor VIII (BDD-FVIII) expressing lentiviral vector and luciferase, green fluorescent protein or Td-Tomato containing lentiviral tracking vectors. They were transplanted intramuscularly into neonatal or adult immunodeficient mice. RESULTS: In vivo bioluminescence imaging showed that the ECFC only and the co-transplantation groups but not the PMSCs only group achieved long-term engraftment for at least 26 weeks, and the co-transplantation group showed a higher engraftment than the ECFC only group at 16 and 20 weeks post-transplantation. In addition, cell transplantation at the neonatal age achieved higher engraftment than at the adult age. Immunohistochemical analyses further showed that the engrafted ECFCs expressed FVIII, maintained endothelial phenotype, and generated functional vasculature. Next, co-transplantation of ECFCs and PMSCs into F8 knock-out HA mice reduced the blood loss volume from 562.13 ± 19.84 µl to 155.78 ± 44.93 µl in a tail-clip assay. CONCLUSIONS: This work demonstrated that co-transplantation of ECFCs with PMSCs at the neonatal age is a potential strategy to achieve stable, long-term engraftment, and thus holds great promise for cell-based treatment of HA.