Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35267434

RESUMO

Glioblastoma (GBM) exhibits populations of cells that drive tumorigenesis, treatment resistance, and disease progression. Cells with such properties have been described to express specific surface and intracellular markers or exhibit specific functional states, including being slow-cycling or quiescent with the ability to generate proliferative progenies. In GBM, each of these cellular fractions was shown to harbor cardinal features of cancer stem cells (CSCs). In this study, we focus on the comparison of these cells and present evidence of great phenotypic and functional heterogeneity in brain cancer cell populations with stemness properties, especially between slow-cycling cells (SCCs) and cells phenotypically defined based on the expression of markers commonly used to enrich for CSCs. Here, we present an integrative analysis of the heterogeneity present in GBM cancer stem cell populations using a combination of approaches including flow cytometry, bulk RNA sequencing, and single cell transcriptomics completed with functional assays. We demonstrated that SCCs exhibit a diverse range of expression levels of canonical CSC markers. Importantly, the property of being slow-cycling and the expression of these markers were not mutually inclusive. We interrogated a single-cell RNA sequencing dataset and defined a group of cells as SCCs based on the highest score of a specific metabolic signature. Multiple CSC groups were determined based on the highest expression level of CD133, SOX2, PTPRZ1, ITGB8, or CD44. Each group, composed of 22 cells, showed limited cellular overlap, with SCCs representing a unique population with none of the 22 cells being included in the other groups. We also found transcriptomic distinctions between populations, which correlated with clinicopathological features of GBM. Patients with strong SCC signature score were associated with shorter survival and clustered within the mesenchymal molecular subtype. Cellular diversity amongst these populations was also demonstrated functionally, as illustrated by the heterogenous response to the chemotherapeutic agent temozolomide. In conclusion, our study supports the cancer stem cell mosaicism model, with slow-cycling cells representing critical elements harboring key features of disseminating cells.

2.
Methods Mol Biol ; 2389: 87-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34558004

RESUMO

Neural stem cells (NSCs) transplantation enhances plasticity and restores functions in neurological diseases. Therapeutic benefits of NSCs are due to their ability to replace the lost neurons and glial cells and also secreting a wide array of free and membrane-bound bioactive molecules that can reduce the hostility of diseased microenvironment, resolve inflammation, and rescue damaged neural cells. Membrane-encircled spherical nanostructures that are collectively known as extracellular vesicles (EVs) contain mRNA, miRNA, lipids, and specific proteins that affect different biological processes in cells located nearby or at far distances. Using EVs as an alternative non-cell-based therapy has gained huge attention, and developing methods for large-scale production of EVs is of great clinical importance. Here, we describe an efficient method to yield significant quantity of EVs from human NSCs that are expanded under free floating neurosphere assay culture system. Using the neurosphere assay in bioreactors under GMP-compliant conditions can result in scalable NSC-EVs required for human trials.


Assuntos
Vesículas Extracelulares , Células-Tronco Neurais , Transporte Biológico , Separação Celular , Células Cultivadas , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo
3.
Ecol Evol ; 10(16): 8538-8553, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884638

RESUMO

Cancer is a disease of single cells that expresses itself at the population level. The striking similarities between initiation and growth of tumors and dynamics of biological populations, and between metastasis and ecological invasion and community dynamics suggest that oncology can benefit from an ecological perspective to improve our understanding of cancer biology. Tumors can be viewed as complex, adaptive, and evolving systems as they are spatially and temporally heterogeneous, continually interacting with each other and with the microenvironment and evolving to increase the fitness of the cancer cells. We argue that an eco-evolutionary perspective is essential to understand cancer biology better. Furthermore, we suggest that ecologically informed therapeutic approaches that combine standard of care treatments with strategies aimed at decreasing the evolutionary potential and fitness of neoplastic cells, such as disrupting cell-to-cell communication and cooperation, and preventing successful colonization of distant organs by migrating cancer cells, may be effective in managing cancer as a chronic condition.

4.
PLoS One ; 14(1): e0210665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30657775

RESUMO

High morbidity and mortality are common traits of malignant tumours and identification of the cells responsible is a focus of on-going research. Many studies are now reporting the use of antibodies specific to Clusters of Differentiation (CD) cell surface antigens to identify tumour-initiating cell (TIC) populations in neural tumours. Medulloblastoma is one of the most common malignant brain tumours in children and despite a considerable amount of research investigating this tumour, the identity of the TICs, and the means by which such cells can be targeted remain largely unknown. Current prognostication and stratification of medulloblastoma using clinical factors, histology and genetic profiling have classified this tumour into four main subgroups: WNT, Sonic hedgehog (SHH), Group 3 and Group 4. Of these subgroups, SHH remains one of the most studied tumour groups due to the ability to model medulloblastoma formation through targeted deletion of the Shh pathway inhibitor Patched1 (Ptch1). Here we sought to utilise CD antibody expression to identify and isolate TIC populations in Ptch1 deleted medulloblastoma, and determine if these antibodies can help classify the identity of human medulloblastoma subgroups. Using a fluorescence-activated cell sorted (FACS) CD antibody panel, we identified CD24 as a marker of TICs in Ptch1 deleted medulloblastoma. CD24 expression was not correlated with markers of astrocytes or oligodendrocytes, but co-labelled with markers of neural progenitor cells. In conjunction with CD15, proliferating CD24+/CD15+ granule cell precursors (GCPs) were identified as a TIC population in Ptch1 deleted medulloblastoma. On human medulloblastoma, CD24 was found to be highly expressed on Group 3, Group 4 and SHH subgroups compared with the WNT subgroup, which was predominantly positive for CD15, suggesting CD24 is an important marker of non-WNT medulloblastoma initiating cells and a potential therapeutic target in human medulloblastoma. This study reports the use of CD24 and CD15 to isolate a GCP-like TIC population in Ptch1 deleted medulloblastoma, and suggests CD24 expression as a marker to help stratify human WNT tumours from other medulloblastoma subgroups.


Assuntos
Biomarcadores/metabolismo , Antígeno CD24/metabolismo , Meduloblastoma/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Divisão Celular/genética , Divisão Celular/fisiologia , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos SCID , Receptor Patched-1/genética , Receptor Patched-1/metabolismo
5.
EMBO J ; 37(23)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30322894

RESUMO

Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast-cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow-cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose-deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7-related metabolic pathways is a viable therapeutic strategy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ácidos Graxos/metabolismo , Glioblastoma/metabolismo , Glicólise , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Animais , Linhagem Celular Tumoral , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/patologia , Proteínas de Neoplasias/metabolismo , Proteínas Supressoras de Tumor/metabolismo
6.
Sci Rep ; 8(1): 3531, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476107

RESUMO

Glioblastoma is the most aggressive and deadly brain cancer. There is growing interest to develop drugs that specifically target to glioblastoma tumor-initiating cells (TICs). However, the cost-effective production of large numbers of high quality glioblastoma TICs for drug discovery with current cell culturing technologies remains very challenging. Here, we report a new method that cultures glioblastoma TICs in microscale alginate hydrogel tubes (or AlgTubes). The AlgTubes allowed long-term culturing (~50 days, 10 passages) of glioblastoma TICs with high growth rate (~700-fold expansion/14 days), high cell viability and high volumetric yield (~3.0 × 108 cells/mL) without losing the stem cell properties, all offered large advancements over current culturing methods. This method can be applied for the scalable production of glioblastoma TICs at affordable cost for drug discovery.


Assuntos
Biomarcadores Tumorais/genética , Técnicas de Cultura de Células , Desenho de Equipamento/instrumentação , Hidrogéis/química , Células-Tronco Neoplásicas/patologia , Alginatos/química , Animais , Biomarcadores Tumorais/metabolismo , Reatores Biológicos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Nestina/genética , Nestina/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
7.
Methods Mol Biol ; 1686: 59-67, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29030812

RESUMO

Tumor resistance to conventional therapies is a major challenge toward the eradication of cancer, a life-threatening disease. This resistance mainly results from tumor heterogeneity and more specifically from the existence of "stem-like" cells that remain in a quiescent state for long periods of time and thus escape commonly used anti-cancer drugs resulting in treatment failure. Therefore, targeting this subpopulation would present a viable strategy to overcome tumor burden. This daunting task requires a deep and thorough understanding of the biology of the quiescent stem-cell population, their interaction with tumor microenvironments, and mechanisms used to sustain themselves despite aggressive therapies. In this chapter, we describe detailed technical procedures for the isolation of quiescent or infrequently dividing stem-like cells in cultured glioblastoma tumor cells using carboxy fluorescein succinimidyl ester (CFSE) staining and flow cytometric analysis. Quiescent glioblastoma cells with stem-like features are characterized and subsequently isolated based on their ability to retain the CFSE labeling.


Assuntos
Citometria de Fluxo/métodos , Fluoresceínas/química , Corantes Fluorescentes/química , Glioblastoma/diagnóstico , Células-Tronco Neoplásicas/patologia , Fase de Repouso do Ciclo Celular , Coloração e Rotulagem/métodos , Succinimidas/química , Divisão Celular , Humanos , Células Tumorais Cultivadas
8.
Adv Nutr ; 8(4): 546-557, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28710142

RESUMO

Good health while aging depends upon optimal cellular and organ functioning that contribute to the regenerative ability of the body during the lifespan, especially when injuries and diseases occur. Although diet may help in the maintenance of cellular fitness during periods of stability or modest decline in the regenerative function of an organ, this approach is inadequate in an aged system, in which the ability to maintain homeostasis is further challenged by aging and the ensuing suboptimal functioning of the regenerative unit, tissue-specific stem cells. Focused nutritional approaches can be used as an intervention to reduce decline in the body's regenerative capacity. This article brings together nutrition-associated therapeutic approaches with the fields of aging, immunology, neurodegenerative disease, and cancer to propose ways in which diet and nutrition can work with standard-of-care and integrated medicine to help improve the brain's function as it ages. The field of regenerative medicine has exploded during the past 2 decades as a result of the discovery of stem cells in nearly every organ system of the body, including the brain, where neural stem cells persist in discrete areas throughout life. This fact, and the uncovering of the genetic basis of plasticity in somatic cells and cancer stem cells, open a door to a world where maintenance and regeneration of organ systems maintain health and extend life expectancy beyond its present limits. An area that has received little attention in regenerative medicine is the influence on regulatory mechanisms and therapeutic potential of nutrition. We propose that a strong relation exists between brain regenerative medicine and nutrition and that nutritional intervention at key times of life could be used to not only maintain optimal functioning of regenerative units as humans age but also play a primary role in therapeutic treatments to combat injury and diseases (in particular, those that occur in the latter one-third of the lifespan).


Assuntos
Envelhecimento , Encéfalo/fisiologia , Regeneração Nervosa , Estado Nutricional , Animais , Relógios Biológicos/fisiologia , Cognição , Disfunção Cognitiva/dietoterapia , Dieta , Microbioma Gastrointestinal , Homeostase , Humanos , Micronutrientes/administração & dosagem , Modelos Animais , Neoplasias/dietoterapia , Doenças Neurodegenerativas/dietoterapia , Medicina Regenerativa , Células-Tronco/metabolismo
9.
Clin Cancer Res ; 23(2): 562-574, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521447

RESUMO

PURPOSE: Investigation of clonal heterogeneity may be key to understanding mechanisms of therapeutic failure in human cancer. However, little is known on the consequences of therapeutic intervention on the clonal composition of solid tumors. EXPERIMENTAL DESIGN: Here, we used 33 single cell-derived subclones generated from five clinical glioblastoma specimens for exploring intra- and interindividual spectra of drug resistance profiles in vitro In a personalized setting, we explored whether differences in pharmacologic sensitivity among subclones could be employed to predict drug-dependent changes to the clonal composition of tumors. RESULTS: Subclones from individual tumors exhibited a remarkable heterogeneity of drug resistance to a library of potential antiglioblastoma compounds. A more comprehensive intratumoral analysis revealed that stable genetic and phenotypic characteristics of coexisting subclones could be correlated with distinct drug sensitivity profiles. The data obtained from differential drug response analysis could be employed to predict clonal population shifts within the naïve parental tumor in vitro and in orthotopic xenografts. Furthermore, the value of pharmacologic profiles could be shown for establishing rational strategies for individualized secondary lines of treatment. CONCLUSIONS: Our data provide a previously unrecognized strategy for revealing functional consequences of intratumor heterogeneity by enabling predictive modeling of treatment-related subclone dynamics in human glioblastoma. Clin Cancer Res; 23(2); 562-74. ©2016 AACR.


Assuntos
Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Heterogeneidade Genética , Glioblastoma/tratamento farmacológico , Animais , Evolução Clonal/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
11.
Transl Oncol ; 9(5): 392-402, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27661404

RESUMO

A better understanding of the molecules implicated in the growth and survival of glioblastoma (GBM) cells and their response to temozolomide (TMZ), the standard-of-care chemotherapeutic agent, is necessary for the development of new therapies that would improve the outcome of current GBM treatments. In this study, we characterize the role of pericentriolar material 1 (PCM1), a component of centriolar satellites surrounding centrosomes, in GBM cell proliferation and sensitivity to genotoxic agents such as TMZ. We show that PCM1 is expressed around centrioles and ciliary basal bodies in patient GBM biopsies and derived cell lines and that its localization is dynamic throughout the cell cycle. To test whether PCM1 mediates GBM cell proliferation and/or response to TMZ, we used CRISPR/Cas9 genome editing to generate primary GBM cell lines depleted of PCM1. These PCM1-depleted cells displayed reduced AZI1 satellite protein localization and significantly decreased proliferation, which was attributable to increased apoptotic cell death. Furthermore, PCM1-depleted lines were more sensitive to TMZ toxicity than control lines. The increase in TMZ sensitivity may be partly due to the reduced ability of PCM1-depleted cells to form primary cilia, as depletion of KIF3A also ablated GBM cells' ciliogenesis and increased their sensitivity to TMZ while preserving PCM1 localization. In addition, the co-depletion of KIF3A and PCM1 did not have any additive effect on TMZ sensitivity. Together, our data suggest that PCM1 plays multiple roles in GBM pathogenesis and that associated pathways could be targeted to augment current or future anti-GBM therapies.

12.
Sci Rep ; 6: 31915, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549983

RESUMO

There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>10(10)-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 10(7) cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Hidrogéis/farmacologia , Células-Tronco Neoplásicas/citologia , Animais , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/transplante , Células Tumorais Cultivadas
13.
Sci Rep ; 6: 23579, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27030542

RESUMO

Many neurological injuries are likely too extensive for the limited repair capacity of endogenous neural stem cells (NSCs). An alternative is to isolate NSCs from a donor, and expand them in vitro as transplantation material. Numerous groups have already transplanted neural stem and precursor cells. A caveat to this approach is the undefined phenotypic distribution of the donor cells, which has three principle drawbacks: (1) Stem-like cells retain the capacity to proliferate in vivo. (2) There is little control over the cells' terminal differentiation, e.g., a graft intended to replace neurons might choose a predominantly glial fate. (3) There is limited ability of researchers to alter the combination of cell types in pursuit of a precise treatment. We demonstrate a procedure for differentiating human neural precursor cells (hNPCs) in vitro, followed by isolation of the neuronal progeny. We transplanted undifferentiated hNPCs or a defined concentration of hNPC-derived neurons into mice, then compared these two groups with regard to their survival, proliferation and phenotypic fate. We present evidence suggesting that in vitro-differentiated-and-purified neurons survive as well in vivo as their undifferentiated progenitors, and undergo less proliferation and less astrocytic differentiation. We also describe techniques for optimizing low-temperature cell preservation and portability.


Assuntos
Criopreservação/métodos , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/transplante , Transplante de Células-Tronco , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Rastreamento de Células/métodos , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Separação Imunomagnética/métodos , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neurais/fisiologia , Neuroglia/citologia , Neuroglia/fisiologia , Neurônios/fisiologia , Fenótipo , Técnicas Estereotáxicas , Transplante Heterólogo
14.
Neuromodulation ; 19(5): 451-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27018335

RESUMO

OBJECTIVES: Deep brain stimulation (DBS) is used for a variety of movement disorders, including Parkinson's disease. There are several theories regarding the biology and mechanisms of action of DBS. Previously, we observed an up-regulation of neural progenitor cell proliferation in post-mortem tissue suggesting that DBS can influence cellular plasticity in regions beyond the site of stimulation. We wanted to support these observations and investigate the relationship if any, between DBS, neural progenitor cells, and microglia. METHODS: We used naïve rats in this study for DBS electrode implantation, stimulation, and microlesions. We used immunohistochemistry techniques for labeling microglial and progenitor cells, and fluorescence microscopy for viewing and quantification of labeled cells. RESULTS: We present data that demonstrates a reciprocal relationship of microglia and neural precursor cells in the presence of acute high frequency stimulation. In our hands, stimulated animals demonstrate significantly lower numbers of activated microglia (p = 0.026) when compared to microlesion and sham animals. The subthalamic region surrounding the DBS stimulating electrode reveals a significant increase in the number of neural precursor cells expressing cell cycle markers, plasticity and precursor cell markers (Ki67; p = 0.0013, MCM2; p = 0.0002). INTERPRETATION: We conclude that in this animal model, acute DBS results in modest local progenitor cell proliferation and influenced the total number of activated microglia. This could be of clinical significance in patients with PD, as it is thought to progress via neuroinflammatory processes involving microglia, cytokines, and the complement system. Further studies are required to comprehend the behavior of microglia in different activation states and their ability to regulate adult neurogenesis under physiologic and pathologic conditions.


Assuntos
Encéfalo/metabolismo , Estimulação Encefálica Profunda/efeitos adversos , Regulação da Expressão Gênica/fisiologia , Núcleo Subtalâmico/fisiologia , Animais , Encéfalo/citologia , Bromodesoxiuridina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Proliferação de Células/fisiologia , Antígeno Ki-67/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleo Subtalâmico/citologia
15.
Oncotarget ; 7(6): 7029-43, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26760767

RESUMO

KIF3A, a component of the kinesin-2 motor, is necessary for the progression of diverse tumor types. This is partly due to its role in regulating ciliogenesis and cell responsiveness to sonic hedgehog (SHH). Notably, primary cilia have been detected in human glioblastoma multiforme (GBM) tumor biopsies and derived cell lines. Here, we asked whether disrupting KIF3A in GBM cells affected ciliogenesis, in vitro growth and responsiveness to SHH, or tumorigenic behavior in vivo. We used a lentiviral vector to create three patient-derived GBM cell lines expressing a dominant negative, motorless form of Kif3a (dnKif3a). In all unmodified lines, we found that most GBM cells were capable of producing ciliated progeny and that dnKif3a expression in these cells ablated ciliogenesis. Interestingly, unmodified and dnKif3a-expressing cell lines displayed differential sensitivities and pathway activation to SHH and variable tumor-associated survival following mouse xenografts. In one cell line, SHH-induced cell proliferation was prevented in vitro by either expressing dnKif3a or inhibiting SMO signaling using cyclopamine, and the survival times of mice implanted with dnKif3a-expressing cells were increased. In a second line, expression of dnKif3a increased the cells' baseline proliferation while, surprisingly, sensitizing them to SHH-induced cell death. The survival times of mice implanted with these dnKif3a-expressing cells were decreased. Finally, expression of dnKif3a in a third cell line had no effect on cell proliferation, SHH sensitivity, or mouse survival times. These findings indicate that KIF3A is essential for GBM cell ciliogenesis, but its role in modulating GBM cell behavior is highly variable.


Assuntos
Carcinogênese/patologia , Cílios/fisiologia , Genes Dominantes/genética , Glioblastoma/patologia , Proteínas Hedgehog/metabolismo , Cinesinas/antagonistas & inibidores , Adulto , Idoso , Animais , Apoptose , Western Blotting , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas Hedgehog/genética , Humanos , Técnicas Imunoenzimáticas , Cinesinas/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Clin Cancer Res ; 22(10): 2482-95, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26631612

RESUMO

PURPOSE: Dysregulated energetics coupled with uncontrolled proliferation has become a hallmark of cancer, leading to increased interest in metabolic therapies. Glioblastoma (GB) is highly malignant, very metabolically active, and typically resistant to current therapies. Dietary treatment options based on glucose deprivation have been explored using a restrictive ketogenic diet (KD), with positive anticancer reports. However, negative side effects and a lack of palatability make the KD difficult to implement in an adult population. Hence, we developed a less stringent, supplemented high-fat low-carbohydrate (sHFLC) diet that mimics the metabolic and antitumor effects of the KD, maintains a stable nutritional profile, and presents an alternative clinical option for diverse patient populations. EXPERIMENTAL DESIGN: The dietary paradigm was tested in vitro and in vivo, utilizing multiple patient-derived gliomasphere lines. Cellular proliferation, clonogenic frequency, and tumor stem cell population effects were determined in vitro using the neurosphere assay (NSA). Antitumor efficacy was tested in vivo in preclinical xenograft models and mechanistic regulation via the mTOR pathway was explored. RESULTS: Reducing glucose in vitro to physiologic levels, coupled with ketone supplementation, inhibits proliferation of GB cells and reduces tumor stem cell expansion. In vivo, while maintaining animal health, the sHFLC diet significantly reduces the growth of tumor cells in a subcutaneous model of tumor progression and increases survival in an orthotopic xenograft model. Dietary-mediated anticancer effects correlate with the reduction of mTOR effector expression. CONCLUSIONS: We demonstrate that the sHFLC diet is a viable treatment alternative to the KD, and should be considered for clinical testing. Clin Cancer Res; 22(10); 2482-95. ©2015 AACR.


Assuntos
Neoplasias Encefálicas/dietoterapia , Glioblastoma/dietoterapia , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Dieta com Restrição de Carboidratos/métodos , Dieta Hiperlipídica/métodos , Dieta Cetogênica/métodos , Modelos Animais de Doenças , Glioblastoma/metabolismo , Glucose/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-26438595

RESUMO

The process of generating new neurons of different phenotype and function from undifferentiated stem and progenitor cells starts at very early stages of development and continues in discrete regions of the mammalian nervous system throughout life. Understanding mechanisms underlying neuronal cell development, biology, function, and interaction with other cells, especially in the neurogenic niche of fully developed adults, is important in defining and developing new therapeutic regimes in regenerative neuroscience. Studying these complex and dynamic processes in vivo is challenging because of the complexity of the nervous system and the presence of many known and unknown confounding variables. However, the challenges could be overcome with simple and robust in vitro models that more or less recapitulate the in vivo events. In this work, we will present an overview of present available in vitro cell-based models of neurogenesis.


Assuntos
Diferenciação Celular , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Encéfalo/fisiologia , Técnicas de Cocultura , Perfilação da Expressão Gênica , Humanos , Fenótipo , Transdução de Sinais
18.
Cell Rep ; 11(7): 1031-42, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25959821

RESUMO

The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43), but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs) possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.


Assuntos
Neoplasias Encefálicas/patologia , Conexina 43/metabolismo , Conexinas/metabolismo , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Comunicação Celular/fisiologia , Imunofluorescência , Junções Comunicantes/metabolismo , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Immunoblotting , Potenciais da Membrana/fisiologia , Células-Tronco Neoplásicas/metabolismo , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase
19.
Anat Cell Biol ; 48(1): 25-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25806119

RESUMO

Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture.

20.
PLoS One ; 10(3): e0120281, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763840

RESUMO

This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs) in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV)-, calretinin (CR)-, somatostatin (SS)-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs). The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.


Assuntos
Neocórtex/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Animais , Sobrevivência Celular , Feto/citologia , Xenoenxertos , Humanos , Camundongos , Neocórtex/metabolismo , Células-Tronco Neurais/química , Células-Tronco Neurais/metabolismo , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , Telencéfalo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA