Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216399

RESUMO

Ubiquitination is a major type of post-translational modification of proteins in eukaryotes. The plant U-Box (PUB) E3 ligase is the smallest family in the E3 ligase superfamily, but plays a variety of essential roles in plant growth, development and response to diverse environmental stresses. Hence, PUBs are potential gene resources for developing climate-resilient crops. However, there is a lack of review of the latest advances to fully understand the powerful gene family. To bridge the gap and facilitate its use in future crop breeding, we comprehensively summarize the recent progress of the PUB family, including gene evolution, classification, biological functions, and multifarious regulatory mechanisms in plants.


Assuntos
Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Melhoramento Vegetal/métodos , Desenvolvimento Vegetal/fisiologia , Estresse Fisiológico/fisiologia , Ubiquitinação/fisiologia
3.
Nat Food ; 3(5): 318-324, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-37117579

RESUMO

As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging and will require more insight into deterministic pathways to yields. Here, we propose a wiring diagram as a platform to illustrate the interrelationships of the physiological traits that impact wheat yield potential and to serve as a decision support tool for crop scientists. The wiring diagram is based on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable expression of both. By illustrating these linkages as coded wires, the wiring diagram can show connections among traits that may not have been apparent, and can inform new research hypotheses and guide crosses designed to accumulate beneficial traits and alleles in breeding. The wiring diagram can also serve to create an ever-richer common point of reference for refining crop models in the future.

4.
iScience ; 24(9): 102965, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34466788

RESUMO

Tradeoffs among plant traits help maintain relative fitness under unpredictable conditions and maximize reproductive success. However, modifying tradeoffs is a breeding challenge since many genes of minor effect are involved. The intensive crosstalk and fine-tuning between growth and defense responsive phytohormones via transcription factors optimizes growth, reproduction, and stress tolerance. There are regulating genes in grain crops that deploy diverse functions to overcome tradeoffs, e.g., miR-156-IPA1 regulates crosstalk between growth and defense to achieve high disease resistance and yield, while OsALDH2B1 loss of function causes imbalance among defense, growth, and reproduction in rice. GNI-A1 regulates seed number and weight in wheat by suppressing distal florets and altering assimilate distribution of proximal seeds in spikelets. Knocking out ABA-induced transcription repressors (AITRs) enhances abiotic stress adaptation without fitness cost in Arabidopsis. Deploying AITRs homologs in grain crops may facilitate breeding. This knowledge suggests overcoming tradeoffs through breeding may expose new ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA