Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 335: 139060, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37257658

RESUMO

This research studied the occurrence, risk assessment and metals associated with microplastic (MPs) in soil of different land-use types in the south west of Iran. One hundred samples were collected from topsoil and MPs were extracted using the floatation method. In total, 9258 MPs particles with mean of 92.85 ± 119.24 particles kg-1 were counted. The mean MPs abundance in urban soils was 2.8 and 3.2 times higher than in industrial and agricultural soils, respectively. Fragment (43%) and small MPs (100-250 µm; 41%), were the dominant shape and size, respectively. Four main polymer types including Poly Ethylene (High Density Poly Ethylene and Low Density Poly Ethylene), Nylon (PA), Poly Propylene (PP), and Poly Styrene (PS) were identified. Nylon (29%) and PE (29%) were dominant polymer types. MPs particles in soil contained different levels of metals such as Cd, Cr, Cu, Fe, Hg, Pb, Zn, and Y, except La and Yb. The mean concentrations of metals were higher in MPs than in soil. The indices of MPs-induced risk (Hstudyarea=16.8) showed a hazard level (III) in the study area. Pollution load index (PLILandusetype) showed hazard level (II) for urban soils and hazard level (I) for industrial and agriculture soils, respectively. Overall, risk index indicated high to extreme danger for MPs pollution in the study area. This is the comprehensive study on the occurrence of soil MPs and associated metals, which provides basic information for a further study concerning ecosystem health in Shiraz.


Assuntos
Metais Pesados , Poluentes do Solo , Ecossistema , Monitoramento Ambiental/métodos , Microplásticos , Plásticos , Metais Pesados/análise , Irã (Geográfico) , Nylons , Poluentes do Solo/análise , Solo , Medição de Risco , Polietileno , Etilenos , China
2.
Chemosphere ; 322: 138150, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804497

RESUMO

Soils are an important source of microplastics (MPs) to the atmosphere but the fluxes and mechanisms involved in MPs entrainment are not well understood. In the present study, a series of horizontally aligned sediment traps have been deployed at different heights within 1 m above the ground for a two-month period at various locations in an arid region (Sarakhs, Iran). MPs were isolated from sediments and were quantified and characterised according to size, colour, shape and polymer composition by established techniques. Most MPs were <250 µm in length, fibres were the most important shape, black and blue-green were the dominant colours, and polymer abundance decreased in the order polyethylene > nylon > polypropylene > polystyrene > polyethylene terephthalate. The distributions of sediment mass (range <0.01-9 g) and number of MPs (range = 0 to 21) were heterogeneous, both between sites and at the different heights sampled, and yielded median, vertically-averaged horizontal fluxes for the region of about 450 g m-2 d-1 and 2600 MP m-2 d-1, respectively. However, when data were pooled, the number of MPs normalised to sediment mass exhibited a significant inverse relationship with sediment mass, an effect attributed to the presence of ambient suspended MPs and sediment that are diluted by the suspension of soil and deposited MPs at higher wind speeds. The mechanisms of MP saltation and entrainment were not ascertained but a theoretical framework for threshold shear velocity based on regularly-shaped particles and density considerations is presented. Further experimental work is required to verify this framework, and in particular for fibrous MPs with different aerodynamic properties to soil particles.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Solo , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
Environ Pollut ; 316(Pt 1): 120513, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374801

RESUMO

Although microplastic pollution jeopardizes both terrestrial and aquatic ecosystems, the movement of plastic particles through terrestrial environments is still poorly understood. Agricultural soils exposed to different managements are important sites of storage and dispersal of microplastics. This study aimed to identify the abundance, distribution, and type of microplastics present in agricultural soils, water, airborne dust, and ditch sediments. Soil health was also assessed using soil macroinvertebrate abundance and diversity. Sixteen fields were evaluated, 6 of which had been exposed to more than 5 years of compost application, 5 were exposed to at least 5 years of plastic mulch use, and 5 were not exposed to any specific management (controls) within the last 5 years. We also evaluated the spread of microplastics from the farms into nearby water bodies and airborne dust. We found 11 types of microplastics in soil, among which Light Density Polyethylene (LDPE) and Light Density Polyethylene covered with pro-oxidant additives (PAC) were the most abundant. The highest concentrations of plastics were found in soils exposed to plastic mulch management (128.7 ± 320 MPs.g-1 soil and 224.84 ± 488 MPs.g-1 soil, respectively) and the particles measured from 50 to 150 µm. Nine types of microplastics were found in water, with the highest concentrations observed in systems exposed to compost. Farms applying compost had higher LDPE and PAC concentrations in ditch sediments as compared to control and mulch systems; a significant correlation between soil polypropylene (PP) microplastics with ditch sediment microplastics (r2 0.7 p < 0.05) was found. LDPE, PAC, PE (Polyethylene), and PP were the most abundant microplastics in airborne dust. Soil invertebrates were scarce in the systems using plastic mulch. A cocktail of microplastics was found in all assessed matrices.


Assuntos
Poluentes do Solo , Poluentes Químicos da Água , Microplásticos , Solo , Plásticos , Polietileno/análise , Poeira , Ecossistema , Água , Poluentes do Solo/análise , Polipropilenos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise
4.
Chemosphere ; 311(Pt 1): 137045, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36419265

RESUMO

In this study, 100 samples were collected from the topsoil of different land-use types (urban, industrial and agricultural) in Shiraz. The content of 26 elements was analyzed. CF, EF, Igeo, NPI, and PLI indices were used to evaluate soil pollution. Ecological risk assessment of metals was calculated by using Er and RI indexes. PCA analysis and the PMF model were used to determine the source of metals in soil. Also, the spatial distribution of metals and risk index were plotted using inverse distance weighting (IDW) with ArcGIS software (10.3). The metal concentrations in the soil ranged from 0.2067 ± 0.0946 (Ag) to 85,673.50 ± 4689.27 (Ca) mg kg-1. The results show that all elements' Concentration in soils was lower than the DOE level. The mean concentration of All rare earth elements (REEs) was lower than WSA and ECM values. Hotspot points pollution of some metals such as Pb, Cd, and Ni are located in high-traffic parts of the urban area. Otherwise, hot spot points of As pollution are located in industrial sample points. Results of indexes show that Sb in urban and agricultural soils have highe mean values of CF (6.75 and 6.85) and Iegeo (2.17 and 2.13), respectively. In industrial soils, S has highe mean values of CF (14.95), EF (100.26), and Igeo (2.95). The PLI index shows that REEs (PLI <1) have no pollution, but PTEs and ENs have pollution (PLI >1). The mean Er, value shows that Sb (127.33) and Cd (104) have significant risk among metals. PCA and PMF models show that The main sources of elements in shiraz soil are vehicularly emitted, fertilizer use, sewage irrigation, atmospheric deposition, and parent material. Generally, results show that Most of the study area has considerable risk, especially concerning PTEs. So, it is recommended to pay more attention to the issue of traffic in the urban environment in to improve the state of the urban area.


Assuntos
Metais Pesados , Metais Terras Raras , Poluentes do Solo , Solo , Poluentes do Solo/análise , Metais Pesados/análise , Cádmio/análise , Irã (Geográfico) , Monitoramento Ambiental , Metais Terras Raras/análise , Medição de Risco
5.
Environ Res ; 212(Pt B): 113213, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35398314

RESUMO

Despite the importance of agricultural soils, little is known about the fate of microplastics (MPs) in this environment. In the present study, MPs have been determined in soils and wind-eroded sediments from two vegetable-growing fields in the Fars province of Iran, one using plastic mulch for water retention (Field 1) and the other using wastewater for irrigation (Field 2). MPs were heterogeneously distributed in the surface (0-5 cm) and subsurface (5-15 cm) soils of both fields, with a maximum concentration overall of about 1.1 MP g-1 and no significant differences in concentrations between either fields or depths. Fibres represented the principal shape of MPs, but spherules, presumably from wastewater, also made a significant (∼25%) contribution to MPs in Field 2. Analysis of selected samples by Raman spectroscopy and scanning electron microscopy revealed that polyethylene terephthalate (PET) and nylon were the most abundant polymers and that MPs exhibited varying degrees of weathering. Concentrations of MPs in this study are within the range reported previously for agricultural soils, although the absence of PET observed in earlier studies is attributed to the use of insufficiently dense solutions to isolate plastics. Deployment of a portable wind tunnel revealed threshold wind velocities for soil erosion of up to 7 and 12 m s-1 and MP erosion rates up to about 0.4 and 1.1 MP m-2 s-1 for Fields 1 and 2, respectively. Erosion rates are considerably greater than published depositional rates for MPs and suggest that agricultural soils act as both a temporary sink and dynamic secondary source of MPs that should be considered in risk assessments and global transport budgets.


Assuntos
Microplásticos , Solo , Agricultura , Plásticos/análise , Águas Residuárias/análise
6.
Sci Total Environ ; 822: 153451, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35114223

RESUMO

Samples of fresh snow (n = 34) have been collected from 29 locations in various urban and remote regions of northern Iran following a period of sustained snowfall and the thawed contents examined for microplastics (MPs) according to established techniques. MP concentrations ranged from undetected to 86 MP L-1 (mean and median concentrations ~20 MP and 12 MP L-1, respectively) and there was no significant difference in MP concentration between sample location type or between different depths of snow (or time of deposition) sampled at selected sites. Fibres were the dominant shape of MP and µ-Raman spectroscopy of selected samples revealed a variety of polymer types, with nylon most abundant. Scanning electron microscopy coupled with energy-dispersive X-ray analysis showed that some MPs were smooth and unweathered while others were more irregular and exhibited significant photo-oxidative and mechanical weathering as well as contamination by extraneous geogenic particles. These characteristics reflect the importance of both local and distal sources to the heterogeneous pool of MPs in precipitated snow. The mean and median concentrations of MPs in the snow samples were not dissimilar to the published mean and median concentrations for MPs in rainfall collected from an elevated location in southwest Iran. However, compared with rainfall, MPs in snow appear to be larger and more diverse in their shape and composition (and include rubber particulates), possibly because of the greater size but lower terminal velocities of snowflakes relative to raindrops. Snowfall represents a significant means by which MPs are scavenged from the atmosphere and transferred to soil and surface waters that warrants further attention.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Irã (Geográfico) , Plásticos/análise , Neve , Poluentes Químicos da Água/análise
7.
Chemosphere ; 292: 133456, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34973256

RESUMO

Dust storms are common events in arid and semi-arid regions that have a wide range of impacts on the environment and human health. This study addresses the presence, characteristics and potential sources of microplastics (MPs) in such events by analysing MPs deposited with dust particles in the metropolis of Shiraz, southwest Iran, following an intense storm in May 2018. At 22 locations throughout the city, MP concentrations on a number basis ranged from 0.04 to 1.06 per g of dust (median = 0.31 MP g-1). Particles were mainly fibrous, with a mean diameter of about 20 µm and >60% under 100 µm in length, and polymer makeup was dominated by nylon, polypropylene and polyethylene terephthalate. Examination of selected MPs by scanning electron microscopy revealed varying degrees of weathering and contamination by extraneous geogenic particles amongst the samples. Using published MP concentrations in urban dusts and remote, arid soils, we estimate that between about 0.1 and 5% of MPs deposited by the dust storm are derived from local sources within the metropolis, with the remainder arising from more distant sources. HYSPLIT modelling, satellite imagery and published geochemical signatures of regional dust particles suggest that the deserts of Saudi Arabia constitute the principal distal and transboundary source. Dust storms may represent a significant means by which MPs are transported and redistributed in arid and semi-arid environments and an important source of MPs to the oceans.


Assuntos
Microplásticos , Plásticos , Cidades , Poeira/análise , Monitoramento Ambiental , Humanos
8.
J Environ Manage ; 304: 114171, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923417

RESUMO

Wind erosion is a critical factor in land degradation worldwide, particularly in arid and semi-arid regions of southern Iran, which have been severely exposed to wind erosion in the recent years due to climate change and land use changes. The main objective of the present study was to predict the wind erosion rate (WER) using easily measurable soil properties combined with some data mining approaches. For this purpose, the WER was measured at 100 locations with different land uses and soil types in the Fars Province, southern Iran using a portable wind tunnel. The WER was predicted by multiple linear regression (MLR), support vector regression (SVR) and decision tree (DT) algorithms using easily measurable soil properties. Results revealed that land use and soil type had significant effect on the WER. The highest mean WER was observed in Entisols with the lowest organic matter (OM), the lowest penetration resistance (PR) and the lowest aggregate mean weight diameter (MWD). Bare lands with the lowest OM and MWD showed the highest WER compared to other land uses. R2 and RMSE of the non-linear regression models developed based on the type of the relationship between the WER and easily measurable soil properties improved by 15% and 12%, respectively, compared to the linear regression model. In both train and test datasets, the SVR and DT models coupled to a genetic algorithm (GA) used for selecting the effective easily measurable soil properties had higher performance than the SVR and DT models using all easily measurable soil properties for predicting WER. With respect to statistical indices, the SVR model with R2 = 0.91 and RMSE = 0.68 g m-2 s-1 outperformed the MLR and DT for predicting the WER. We concluded that combining the SVR with GA could be an applicable and promising method for predicting WER.


Assuntos
Clima Desértico , Solo , Mudança Climática , Irã (Geográfico) , Aprendizado de Máquina
10.
Chemosphere ; 279: 130533, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33892458

RESUMO

In the middle of May 2018, an unprecedented dust storm occurred in the Shiraz metropolis. After the storm, several samples were collected from dust that settled around the city. These dust samples were analysed for potentially toxic elements (PTEs), rare earth elements (REEs), and radionuclides. This work is the first study that considered rare earth elements (REEs) for source identification and radionuclide contamination of Shiraz dust event. Hysplit model analysis and NASA and NOAA satellite maps illustrated that the air mass affecting Shiraz was moving mainly through the Saudi Arabian deserts. In addition, REE results of the dust that settled in Shiraz showed a trend similar to shale, sandstone, and especially Saudi Arabian soils. Ti/Al (0.01), Fe/Al (0.92), and Mg/Al (0.55) ratios and the values of LaN/SmN (0.91-0.98), GdN/YbN (1.8-2), LaN/YbN (1.7-1.9), HREE/LREE (0.52-0.6), Ce/Ce∗ (1.09-1.13), Eu/Eu∗ (1.03-1.18), Pr/Pr∗ (0.85-0.87), Gd/Gd∗ (1.1-1.15), and MREEs/MREE∗ (4.3-4.5) ratios provided insights into dust sources. These values indicated that Shiraz dust was affected by Asaluyeh and Iraq soils during transport and the main source of the dust that settled in Shiraz on the May 13, 2018 was Saudi Arabian soil. The concentrations of Mo, Cu, Pb, Zn, Ni, Co, Mn, As, Cd, Ti, Al, Sc, and Fe in the settled dust were 0.24, 47.67, 67.33, 244, 70.27, 19.33, 664, 8.39, 0.65, 537.33, 40933.33, 11.54, and 37800 mg/kg, respectively. According to the enrichment factor (EF), coefficient variation, and Positive Matrix Factorization (PMF) model the Mo, Cu, Pb, Zn, and Cd mainly originated from exhaust emissions and industrial activities. The activity concentrations of the radionuclides 7Be, 4 K, 137Cs, and 235U in the Shiraz-settled dust were 814, 421, 14, and 5.4 Bq kg-1, respectively and the activity concentration of 4 K was higher than the crustal average. Health risk assessment indices for the elements considering all three pathways revealed the following trend: dermal contact (HQderm)< inhalation (HQinh)< ingestion (HQing). The values of HQinh and HQing for children were higher than adults, while the values for the skin adsorption pathway for adults were higher than for children.


Assuntos
Metais Pesados , Metais Terras Raras , Adulto , Criança , Cidades , Poeira/análise , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Radioisótopos , Medição de Risco , Arábia Saudita
11.
Environ Sci Pollut Res Int ; 28(28): 37894-37917, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33723776

RESUMO

Water-induced erosion poses severe harm to the sustainable development of land and water resources that is essential for attaining agricultural sustainability in Qareaghaj catchment of Fars Province, Iran. This study evaluates the topo-hydrological, morphometric, climatic, and environmental characteristics of Qareaghaj catchment for prioritizing the sub-watersheds that are susceptible to erosion caused by water. We tested and compared a novel ensemble multi-criteria decision-making (MCDM) model, namely the weighted aggregated sum product assessment-analytical hierarchy process (WASPAS-AHP) with prevailing benchmark ensemble MCDM models including VlseKriterijumska optimizacija I Kompromisno Resenje (VIKOR)-AHP and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)-AHP for ranking sub-watersheds and determining the most significant parameter that influences water erosion (WE) in Qareaghaj catchment. The outcome of weights using pairwise comparison matrix (PCM) of AHP reveals that normalized difference vegetation index (NDVI), mean annual rainfall (MAR), slope degree (SD), and slope length and steepness factor (LS) governs the WE in Qareaghaj catchment. The prioritization rankings of sub-watersheds obtained using the VIKOR-AHP, TOPSIS-AHP, and WASPAS-AHP models demonstrate that SW31, SW63, and SW94 had the highest priority rank with a score of 0.047, 0.69, and 0.477, respectively. The comparison of rankings from the models using Spearman's correlation coefficient tests (SCCT) and Kendall's tau correlation coefficient tests (KTCCT) revealed that WASPAS-AHP had a higher correlation with TOPSIS-AHP and VIKOR-AHP ensemble models. The outcome of MCDM models was validated based on the erosion potential method (EPM), which displayed that the VIKOR-AHP model was better for mapping the erosion susceptibility than TOPSIS-AHP and WASPAS-AHP models. Thus, the erosion susceptibility mapping based on the VIKOR-AHP ensemble model can be considered for developing new strategies and land use policies in order to control WE in Qareaghaj catchment.


Assuntos
Hidrologia , Água , Irã (Geográfico) , Desenvolvimento Sustentável
12.
Sci Total Environ ; 669: 273-281, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30878934

RESUMO

Microplastic pollution in the environment is a growing concern in today's world. Wind-eroded sediment, as an environmental transport pathway of microplastics, can result in environmental and human exposure far beyond its sources. For the first time, this study investigates the presence of microplastics in wind-eroded sediments from different land uses in the Fars Province, Iran. Eleven test plots were selected based on land use and wind erosion risk. On each plot, wind erosion was simulated using a portable wind tunnel and the eroded sediment was collected for further analysis aimed at measuring light density microplastics (LDMP). The LDMPs were extracted in both soil and wind-eroded sediment using a floatation method and then further examined using microscopy. Annual LDMP transport by wind erosion was estimated using wind data from the study areas. LDMPs were detected in six study areas in the Fars Province which are highly prone to wind erosion. Although LDMPs were found mostly in agricultural land, it was also detected in the soils and sediments from two natural areas. The total concentrations of LDMPs in polluted areas were 6.91 and 20.27 mg kg-1 of microplastics in soil and wind-eroded sediments, respectively. The enrichment ratio for LDMP ranged from 2.83 to 7.63 in different areas. The erosion rate of LDMP ranged from 0.08 to 1.48 mg m-2 min-1. The results of this study confirmed the key role of wind erosion in the spread of microplastics in terrestrial environments which could form an exposure risk to humans via direct inhalation of the particles transported with the dust.

13.
Environ Pollut ; 220(Pt B): 1079-1089, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27876225

RESUMO

Glyphosate is one of the most used herbicides in agricultural lands worldwide. Wind-eroded sediment and dust, as an environmental transport pathway of glyphosate and of its main metabolite aminomethylphosphonic acid (AMPA), can result in environmental- and human exposure far beyond the agricultural areas where it has been applied. Therefore, special attention is required to the airborne transport of glyphosate and AMPA. In this study, we investigated the behavior of glyphosate and AMPA in wind-eroded sediment by measuring their content in different size fractions (median diameters between 715 and 8 µm) of a loess soil, during a period of 28 days after glyphosate application. Granulometrical extraction was done using a wind tunnel and a Soil Fine Particle Extractor. Extractions were conducted on days 0, 3, 7, 14, 21 and 28 after glyphosate application. Results indicated that glyphosate and AMPA contents were significantly higher in the finest particle fractions (median diameters between 8 and 18 µm), and lowered significantly with the increase in particle size. However, their content remained constant when aggregates were present in the sample. Glyphosate and AMPA contents correlated positively with clay, organic matter, and silt content. The dissipation of glyphosate over time was very low, which was most probably due to the low soil moisture content of the sediment. Consequently, the formation of AMPA was also very low. The low dissipation of glyphosate in our study indicates that the risk of glyphosate transport in dry sediment to off-target areas by wind can be very high. The highest glyphosate and AMPA contents were found in the smallest soil fractions (PM10 and less), which are easily inhaled and, therefore, contribute to human exposure.


Assuntos
Glicina/análogos & derivados , Poluentes do Solo/química , Solo/química , Vento , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/química , Citocromo P-450 CYP1A1 , Monitoramento Ambiental , Glicina/química , Herbicidas/química , Humanos , Isoxazóis , Organofosfonatos , Tetrazóis , Glifosato
14.
PeerJ ; 4: e1948, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547511

RESUMO

Wind erosion is a complex process influenced by different factors. Most of these factors are stable over time, but land use/cover and land management practices are changing gradually. Therefore, this research investigates the impact of changing land use/cover and land management on wind erosion potential in southern Iran. We used remote sensing data (Landsat ETM+ and Landsat 8 imagery of 2004 and 2013) for land use/cover mapping and employed the Iran Research Institute of Forest and Rangeland (IRIFR) method to estimate changes in wind erosion potential. For an optimal mapping, the performance of different classification algorithms and input layers was tested. The amount of changes in wind erosion and land use/cover were quantified using cross-tabulation between the two years. To discriminate land use/cover related to wind erosion, the best results were obtained by combining the original spectral bands with synthetic bands and using Maximum Likelihood classification algorithm (Kappa Coefficient of 0.8 and 0.9 for Landsat ETM+ and Landsat 8, respectively). The IRIFR modelling results indicate that the wind erosion potential has increased over the last decade. The areas with a very high sediment yield potential have increased, whereas the areas with a low, medium, and high sediment yield potential decreased. The area with a very low sediment yield potential have remained constant. When comparing the change in erosion potential with land use/cover change, it is evident that soil erosion potential has increased mostly in accordance with the increase of the area of agricultural practices. The conversion of rangeland to agricultural land was a major land-use change which lead to more agricultural practices and associated soil loss. Moreover, results indicate an increase in sandification in the study area which is also a clear evidence of increasing in soil erosion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA