Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (141)2018 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-30474639

RESUMO

The Rho GTPase family belongs to the Ras superfamily and includes approximately 20 members in humans. Rho GTPases are important in the regulation of diverse cellular functions, including cytoskeletal dynamics, cell motility, cell polarity, axonal guidance, vesicular trafficking, and cell cycle control. Changes in Rho GTPase signaling play an essential regulatory role in many pathological conditions, such as cancer, central nervous system diseases, and immune system-dependent diseases. The posttranslational modification of Rho GTPases (i.e., prenylation by mevalonate pathway intermediates) and GTP binding are key factors which affect the activation of this protein. In this paper, two essential and simple methods are provided to detect a broad range of Rho GTPase prenylation and GTP binding activities. Details of the technical procedures that have been used are explained step by step in this manuscript.


Assuntos
Membrana Celular/metabolismo , Técnicas de Química Analítica/métodos , Ensaio de Imunoadsorção Enzimática , Guanosina Trifosfato/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas rho de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Humanos , Prenilação , Ligação Proteica
2.
Sci Rep ; 7: 44841, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28344327

RESUMO

The mevalonate (MEV) cascade is responsible for cholesterol biosynthesis and the formation of the intermediate metabolites geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) used in the prenylation of proteins. Here we show that the MEV cascade inhibitor simvastatin induced significant cell death in a wide range of human tumor cell lines, including glioblastoma, astrocytoma, neuroblastoma, lung adenocarcinoma, and breast cancer. Simvastatin induced apoptotic cell death via the intrinsic apoptotic pathway. In all cancer cell types tested, simvastatin-induced cell death was not rescued by cholesterol, but was dependent on GGPP- and FPP-depletion. We confirmed that simvastatin caused the translocation of the small Rho GTPases RhoA, Cdc42, and Rac1/2/3 from cell membranes to the cytosol in U251 (glioblastoma), A549 (lung adenocarcinoma) and MDA-MB-231(breast cancer). Simvastatin-induced Rho-GTP loading significantly increased in U251 cells which were reversed with MEV, FPP, GGPP. In contrast, simvastatin did not change Rho-GTP loading in A549 and MDA-MB-231. Inhibition of geranylgeranyltransferase I by GGTi-298, but not farnesyltransferase by FTi-277, induced significant cell death in U251, A549, and MDA-MB-231. These results indicate that MEV cascade inhibition by simvastatin induced the intrinsic apoptosis pathway via inhibition of Rho family prenylation and depletion of GGPP, in a variety of different human cancer cell lines.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Ácido Mevalônico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinvastatina/farmacologia , Alquil e Aril Transferases/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Farnesiltranstransferase/metabolismo , Humanos , Transporte Proteico , Terpenos , Proteínas rho de Ligação ao GTP/metabolismo
3.
Behav Neurol ; 2016: 2964712, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27847404

RESUMO

Cell therapy is the most advanced treatment of the cerebral ischemia, nowadays. Herein, we discuss the neuroprotective effects of bone marrow mesenchymal stem cells (BMSCs) on rat hippocampal cells following intravenous injection of these cells in an ischemia-reperfusion model. Adult male Wistar rats were divided into 5 groups: control, sham (surgery without blockage of common carotid arteries), ischemia (common carotid arteries were blocked for 30 min prior to reperfusion), vehicle (7 days after ischemia PBS was injected via the tail vein), and treatment (injections of BMSC into the tail veins 7 days after ischemia). We performed neuromuscular and vestibulomotor function tests to assess behavioral function and, finally, brains were subjected to hematoxylin and eosin (H&E), anti-Brdu immunohistochemistry, and TUNEL staining. The ischemia group had severe apoptosis. The group treated with BMSCs had a lower mortality rate and also had significant improvement in functional recovery (P < 0.001). Ischemia-reperfusion for 30 min causes damage and extensive neuronal death in the hippocampus, especially in CA1 and CA3 regions, leading to several functional and neurological deficits. In conclusion, intravenous injection of BMSCs can significantly decrease the number of apoptotic neurons and significantly improve functional recovery, which may be a beneficial treatment method for ischemic injuries.


Assuntos
Isquemia Encefálica/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/patologia , Transplante de Medula Óssea/métodos , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Artérias Carótidas/fisiopatologia , Estenose das Carótidas/fisiopatologia , Modelos Animais de Doenças , Hipocampo/irrigação sanguínea , Hipocampo/fisiopatologia , Masculino , Células-Tronco Mesenquimais/fisiologia , Ratos , Ratos Wistar
4.
Hepat Mon ; 16(2): e36005, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27148389

RESUMO

BACKGROUND: Hepatitis C virus (HCV) has been known as a major cause of hepatocellular carcinoma (HCC) worldwide. However, the distinct molecular mechanisms underlying the effects of HCV proteins on the HCC progression have remained unclear. OBJECTIVES: In the present study, we studied the possible role of HCV in the HCC initiation and invasion using topological analysis of protein-protein interaction (PPI) networks. MATERIALS AND METHODS: After analysis with GEO2R, a PPI network of differentially expressed genes (DEGs) was constructed for both chronic HCV and HCC samples. The STRING and GeneMANIA databases were used to determine the putative interactions between DEGs. In parallel, the functional annotation of DEGs was performed using g: Profiler web tool. The topological analysis and network visualization was carried outperformed using Cytoscape software and the top hub genes were identified. We determined the hub genes-related miRNAs using miRTarBase server and reconstructed a miRNA-Hubgene network. RESULTS: Based on the topological analysis of miRNA-Hubgene network, we identified the key hub miRNAs. In order to identify the most important common sub-network, we aligned two PPI networks using NETAL tool. The c-Jun gene was identified as the most important hub gene in both HCV and HCC networks. Furthermore, the hsa-miR-34a, hsa-miR-155, hsa-miR-24, hsa-miR-744 and hsa-miR-92a were recognized as the most important hub miRNAs with positive correlation in the chronic HCV and HCC samples. Functional annotation of differentially expressed miRNAs (DEMs) using the tool for annotations of human miRNAs (TAM) revealed that there is a considerable overlap between miRNA gene expression profiles of HCV-infected and HCC cells. CONCLUSIONS: Our results revealed the possible crucial genes and miRNAs involved in the initiation and progression of HCC cells infected with HCV.

5.
World J Gastroenterol ; 21(47): 13225-39, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26715805

RESUMO

AIM: To investigate the co-incidence of apoptosis, autophagy, and unfolded protein response (UPR) in hepatitis B (HBV) and C (HCV) infected hepatocytes. METHODS: We performed immunofluorescence confocal microscopy on 10 liver biopsies from HBV and HCV patients and tissue microarrays of HBV positive liver samples. We used specific antibodies for LC3ß, cleaved caspase-3, BIP (GRP78), and XBP1 to detect autophagy, apoptosis and UPR, respectively. Anti-HCV NS3 and anti-HBs antibodies were also used to confirm infection. We performed triple blind counting of events to determine the co-incidence of autophagy (LC3ß punctuate), apoptosis (cleaved caspase-3), and unfolded protein response (GRP78) with HBV and HCV infection in hepatocytes. All statistical analyses were performed using SPSS software for Windows (Version 16 SPSS Inc, Chicago, IL, United States). P-values < 0.05 were considered statistically significant. Statistical analyses were performed with Mann-Whitney test to compare incidence rates for autophagy, apoptosis, and UPR in HBV- and HCV-infected cells and adjacent non-infected cells. RESULTS: Our results showed that infection of hepatocytes with either HBV and HCV induces significant increase (P < 0.001) in apoptosis (cleavage of caspase-3), autophagy (LC3ß punctate), and UPR (increase in GRP78 expression) in the HCV- and HBV-infected cells, as compared to non-infected cells of the same biopsy sections. Our tissue microarray immunohistochemical expression analysis of LC3ß in HBV(Neg) and HBV(Pos) revealed that majority of HBV-infected hepatocytes display strong positive staining for LC3ß. Interestingly, although XBP splicing in HBV-infected cells was significantly higher (P < 0.05), our analyses show a slight increase of XBP splicing was in HCV-infected cells (P > 0.05). Furthermore, our evaluation of patients with HBV and HCV infection based on stage and grade of the liver diseases revealed no correlation between these pathological findings and induction of apoptosis, autophagy, and UPR. CONCLUSION: The results of this study indicate that HCV and HBV infection activates apoptosis, autophagy and UPR, but slightly differently by each virus. Further studies are warranted to elucidate the interconnections between these pathways in relation to pathology of HCV and HBV in the liver tissue.


Assuntos
Apoptose , Autofagia , Hepatite B/patologia , Hepatite C/patologia , Hepatócitos/patologia , Fígado/patologia , Resposta a Proteínas não Dobradas , Biomarcadores/análise , Biópsia , Caspase 3/análise , Chaperona BiP do Retículo Endoplasmático , Imunofluorescência , Hepatite B/metabolismo , Hepatite B/virologia , Hepatite C/metabolismo , Hepatite C/virologia , Hepatócitos/química , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Fígado/química , Fígado/virologia , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/análise , Estudos Retrospectivos , Índice de Gravidade de Doença , Análise Serial de Tecidos , Proteína 1 de Ligação a X-Box/análise
6.
Iran J Allergy Asthma Immunol ; 12(1): 1-17, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23454774

RESUMO

Asthma is one of the fastest growing syndromes in many countries and is adding a huge cost to the health care system. Increasing reports have linked airway infectious diseases to asthma. Influenza is one of the most serious airway infectious diseases and in recent years there have been some serious influenza virus pandemics which caused increased fatality in numerous different populations. Diverse host response pathways during virus infection have been identified, including different cell death and survival pathways. These pathways include 1) programmed cell death I (apoptosis), 2) programmed cell death II (autophagy), and 3) endoplasmic reticulum stress with subsequent unfolded protein response (UPR). There has been extensive research on the regulatory roles of these pathways during the influenza virus life cycle. These studies address the benefits of enhancing or inhibiting these pathways on viral replication. Here we review the most recent and significant knowledge in this area for possible benefits to clinicians and basic scientist researchers in different areas of the respiratory and virology sciences.


Assuntos
Apoptose/genética , Asma/metabolismo , Autofagia/genética , Estresse do Retículo Endoplasmático/genética , Influenza Humana/metabolismo , Orthomyxoviridae/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Asma/complicações , Asma/genética , Asma/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Influenza Humana/complicações , Influenza Humana/genética , Influenza Humana/virologia , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Resposta a Proteínas não Dobradas/genética , Replicação Viral
7.
Bioimpacts ; 2(3): 151-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23678453

RESUMO

INTRODUCTION: Pathogenic role of free radicals are well known in various metabolic diseases. They originate from internal and external sources of body. Essential roles of antioxidant defense system for cellular redox regulation and free radical scavenging activity were described in this study. Many in vitro investigations have shown that turmeric (TE) and carrot seed extract (CSE) exhibits to possess antioxidant activities. In this study, we evaluated the antioxidant potentials of ethanolic TE and CSE based on in vivo experiment in the rats. METHODS: ANIMALS WERE ASSIGNED TO SIX GROUPS: the 1st and 2nd groups were control groups and 2nd group received 0.2 ml dimethyl sulphoxide as vehicle treated group; other four experimental groups received different doses of TE (100, 200 mg/kg b.w.) and CSE (200, 400 mg/kg b.w.) by gavages, respectively for a period of one month. The indicators of oxidative stress, lipids peroxidation, markers of hepatocyte injury and biliary function markers were measured. RESULTS: The levels of superoxide dismutase, catalase, and glutathione peroxidase were significantly stimulated in the hepatic tissue of treatment groups. The malondialdehyde contents of liver tissue were significantly reduced in the groups fed with TE and CSE. Serum levels of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase, in treated groups were found to be significantly decreased, whereas albumin and total protein increased as compared to the control groups (P<0.05). CONCLUSION: this study showed that the regular intake of TE and CSE through the diet can improve antioxidant status and inhibit peroxidation activity in the liver tissue so that using these extracts may protect tissue oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA