Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 445: 130448, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462239

RESUMO

In recent years, growing attention has been directed toward the phycoremediation of heavy metals from bodies of water; however, many challenges remain. The nitrogen requirements for algal growth in nutrient-poor waters can lead to substantial costs. Moreover, proper management of the metal-loaded biomass is a concern. This study assessed the performance of two nitrogen-fixing cyanobacteria, Anabaena sp. and Nostoc muscorum, in treating Pb(II)-contaminated water without nitrogen under batch and fed-batch modes, as well as the subsequent utilization of the produced biomass as a biofertilizer. After 12 days of the batch mode with initial Pb(II) concentrations of 10, 20, 35, and 60 mg/L, Pb(II) removal efficiencies were 98.90%, 98.95%, 97.20%, and 84.98% by Anabaena sp. and 88.00%, 73.10%, 54.54%, and 26.83% by N. muscorum, respectively. Anabaena sp. sustained growth and Pb(II) removal under the fed-batch mode by adjusting hydraulic retention time based on the influent Pb(II) concentration. Decontamination of the metal-loaded Anabaena sp. biomass was performed and resulted in a Pb(II) desorption of 93%. The desorbed Anabaena sp. extract provided the nutrient requirements for Chlorella vulgaris. The proposed strategy provides simultaneous Pb(II) bioremediation and biofertilizer production in a system driven by light energy, atmospheric N2, and CO2.


Assuntos
Anabaena , Chlorella vulgaris , Cianobactérias , Chumbo , Nitrogênio , Água , Biomassa
2.
Artigo em Inglês | MEDLINE | ID: mdl-25964854

RESUMO

BACKGROUND: The aim of this study is to accelerate and improve aerobic granulation within a Sequencing Batch Reactor (SBR) by cationic polymer addition. METHODS: To identify whether the polymer additive is capable of enhancing granule formation, two SBRs (R1 and R2, each 0.15 m in diameter and 2 m in height) are used by feeding synthetic wastewater. The cationic polymer with concentration of 30 to 2 ppm is added to R2, while no cationic polymer is added to R1. RESULTS: Results show that the cationic polymer addition causes faster granule formation and consequently shorter reactor start-up period. The polymer-amended reactor contains higher concentration of biomass with better settling ability (23% reduction in SVI15) and larger and denser granules (112% increase of granular diameter). In addition, the results demonstrate that the cationic polymer improve the sludge granulation process by 31% increase in Extracellular Polymer Substance(EPS) concentration, 7% increase in Specific Oxygen Uptake Rate(SOUR), 18% increase in hydrophobicity, and 17% reduction in effluent Mixed Liquor Suspended Solid(MLSS) concentration. CONCLUSIONS: Concludingly, it is found that using the cationic polymer to an aerobic granular system has the potential to enhance the sludge granulation process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA