Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Database (Oxford) ; 2015: bav066, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26130662

RESUMO

Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that must monitor for changes in the host environment and respond accordingly; however, it is still not fully known which genetic or epigenetic factors are involved in regulating virulence traits of T. gondii. There are on-going efforts to elucidate the mechanisms regulating the stage transition process via the application of high-throughput epigenomics, genomics and proteomics techniques. Given the range of experimental conditions and the typical yield from such high-throughput techniques, a new challenge arises: how to effectively collect, organize and disseminate the generated data for subsequent data analysis. Here, we describe toxoMine, which provides a powerful interface to support sophisticated integrative exploration of high-throughput experimental data and metadata, providing researchers with a more tractable means toward understanding how genetic and/or epigenetic factors play a coordinated role in determining pathogenicity of T. gondii. As a data warehouse, toxoMine allows integration of high-throughput data sets with public T. gondii data. toxoMine is also able to execute complex queries involving multiple data sets with straightforward user interaction. Furthermore, toxoMine allows users to define their own parameters during the search process that gives users near-limitless search and query capabilities. The interoperability feature also allows users to query and examine data available in other InterMine systems, which would effectively augment the search scope beyond what is available to toxoMine. toxoMine complements the major community database ToxoDB by providing a data warehouse that enables more extensive integrative studies for T. gondii. Given all these factors, we believe it will become an indispensable resource to the greater infectious disease research community.


Assuntos
Bases de Dados Genéticas , Genômica , Biologia de Sistemas , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/patogenicidade
2.
Nature ; 488(7413): 652-5, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22902501

RESUMO

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by using the pluripotency factors Oct4, Sox2, Klf4 and c-Myc (together referred to as OSKM). iPSC reprogramming erases somatic epigenetic signatures­as typified by DNA methylation or histone modification at silent pluripotency loci­and establishes alternative epigenetic marks of embryonic stem cells (ESCs). Here we describe an early and essential stage of somatic cell reprogramming, preceding the induction of transcription at endogenous pluripotency loci such as Nanog and Esrrb. By day 4 after transduction with OSKM, two epigenetic modification factors necessary for iPSC generation, namely poly(ADP-ribose) polymerase-1 (Parp1) and ten-eleven translocation-2 (Tet2), are recruited to the Nanog and Esrrb loci. These epigenetic modification factors seem to have complementary roles in the establishment of early epigenetic marks during somatic cell reprogramming: Parp1 functions in the regulation of 5-methylcytosine (5mC) modification, whereas Tet2 is essential for the early generation of 5-hydroxymethylcytosine (5hmC) by the oxidation of 5mC (refs 3,4). Although 5hmC has been proposed to serve primarily as an intermediate in 5mC demethylation to cytosine in certain contexts, our data, and also studies of Tet2-mutant human tumour cells, argue in favour of a role for 5hmC as an epigenetic mark distinct from 5mC. Consistent with this, Parp1 and Tet2 are each needed for the early establishment of histone modifications that typify an activated chromatin state at pluripotency loci, whereas Parp1 induction further promotes accessibility to the Oct4 reprogramming factor. These findings suggest that Parp1 and Tet2 contribute to an epigenetic program that directs subsequent transcriptional induction at pluripotency loci during somatic cell reprogramming.


Assuntos
Reprogramação Celular , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Dioxigenases , Éxons/genética , Fibroblastos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Íntrons/genética , Fator 4 Semelhante a Kruppel , Camundongos , Proteína Homeobox Nanog , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
3.
DNA Repair (Amst) ; 10(1): 34-44, 2011 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-20951653

RESUMO

Telomeres are nucleoprotein complexes at the ends of linear chromosomes in eukaryotes, and are essential in preventing chromosome termini from being recognized as broken DNA ends. Telomere shortening has been linked to cellular senescence and human aging, with oxidative stress as a major contributing factor. 7,8-Dihydro-8-oxogaunine (8-oxodG) is one of the most abundant oxidative guanine lesions, and 8-oxoguanine DNA glycosylase (OGG1) is involved in its removal. In this study, we examined if telomeric DNA is particularly susceptible to oxidative base damage and if telomere-specific factors affect the incision of oxidized guanines by OGG1. We demonstrated that telomeric TTAGGG repeats were more prone to oxidative base damage and repaired less efficiently than non-telomeric TG repeats in vivo. We also showed that the 8-oxodG-incision activity of OGG1 is similar in telomeric and non-telomeric double-stranded substrates. In addition, telomere repeat binding factors TRF1 and TRF2 do not impair OGG1 incision activity. Yet, 8-oxodG in some telomere structures (e.g., fork-opening, 3'-overhang, and D-loop) were less effectively excised by OGG1, depending upon its position in these substrates. Collectively, our data indicate that the sequence context of telomere repeats and certain telomere configurations may contribute to telomere vulnerability to oxidative DNA damage processing.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , DNA/metabolismo , Desoxiguanosina/análogos & derivados , Telômero/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Células Cultivadas , DNA/química , Dano ao DNA , DNA Glicosilases/genética , DNA de Cadeia Simples/metabolismo , Desoxiguanosina/metabolismo , Humanos , Camundongos , Estresse Oxidativo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Telômero/química , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Repetições de Trinucleotídeos
4.
PLoS Genet ; 6(5): e1000951, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20485567

RESUMO

8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1)-initiated DNA base excision repair (BER). Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH), by chromosome orientation-FISH (CO-FISH), and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/-)) mouse tissues and primary embryonic fibroblasts (MEFs) cultivated in hypoxia condition (3% oxygen), whereas telomere shortening was detected in Ogg1(-/-) mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen) or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/-) mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/-) mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/-) MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity in mammals.


Assuntos
Guanina/química , Guanosina/análogos & derivados , Telômero , Animais , Células Cultivadas , Técnica Indireta de Fluorescência para Anticorpo , Guanosina/química , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Estresse Oxidativo , Recombinação Genética , Troca de Cromátide Irmã
5.
Hum Mol Genet ; 19(5): 879-87, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20022886

RESUMO

Telomere shortening has been linked to rare human disorders that present with bone marrow failure including Fanconi anemia (FA). FANCC is one of the most commonly mutated FA genes in FA patients and the FANCC subtype tends to have a relatively early onset of bone marrow failure and hematologic malignancies. Here, we studied the role of Fancc in telomere length regulation in mice. Deletion of Fancc (Fancc(-/-)) did not affect telomerase activity, telomere length or telomeric end-capping in a mouse strain possessing intrinsically long telomeres. However, ablation of Fancc did exacerbate telomere attrition when murine bone marrow cells experienced high cell turnover after serial transplantation. When Fancc(-/-) mice were crossed into a telomerase reverse transcriptase heterozygous or null background (Tert(+/-) or Tert(-/-)) with short telomeres, Fancc deficiency led to an increase in the incidence of telomere sister chromatid exchange. In contrast, these phenotypes were not observed in Tert mutant mice with long telomeres. Our data indicate that Fancc deficiency accelerates telomere shortening during high turnover of hematopoietic cells and promotes telomere recombination initiated by short telomeres.


Assuntos
Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Troca de Cromátide Irmã/genética , Telômero/genética , Animais , Células da Medula Óssea/metabolismo , Anemia de Fanconi/genética , Proteína do Grupo de Complementação C da Anemia de Fanconi/metabolismo , Camundongos , Camundongos Knockout , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo
6.
J Cell Biol ; 181(3): 475-83, 2008 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-18458157

RESUMO

Centrosome duplication is tightly controlled in coordination with DNA replication. The molecular mechanism of centrosome duplication remains unclear. Previous studies found that a fraction of human proline-directed phosphatase Cdc14B associates with centrosomes. However, Cdc14B's involvement in centrosome cycle control has never been explored. Here, we show that depletion of Cdc14B by RNA interference leads to centriole amplification in both HeLa and normal human fibroblast BJ and MRC-5 cells. Induction of Cdc14B expression through a regulatable promoter significantly attenuates centriole amplification in prolonged S phase-arrested cells and proteasome inhibitor Z-L(3)VS-treated cells. This inhibitory function requires centriole-associated Cdc14B catalytic activity. Together, these results suggest a potential function for Cdc14B phosphatase in maintaining the fidelity of centrosome duplication cycle.


Assuntos
Centríolos/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Regulação da Expressão Gênica , Animais , Ciclo Celular/fisiologia , Células Cultivadas , Fosfatases de Especificidade Dupla/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Células HeLa , Humanos , Regiões Promotoras Genéticas , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA