Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol ; 61(11): 939-951, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38082069

RESUMO

Meiosis is a process through which diploid cells divide into haploid cells, thus promoting genetic diversity. This diversity arises from the formation of genetic crossovers (COs) that repair DNA double-strand breaks (DSBs), through homologous recombination (HR). Deficiencies in HR can lead to chromosomal abnormality resulting from chromosomal nondisjunction, and genetic disorders. Therefore, investigating the mechanisms underlying effective HR is crucial for reducing genome instability. Budding yeast serves as an ideal model for studying HR mechanisms due to its amenability to gene modifications and the ease of inducing synchronized meiosis to yield four spores. During meiosis, at the DNA level, programmed DSBs are repaired as COs or non-crossovers (NCOs) through structural alterations in the nascent D-loop, involving single-end invasions (SEIs) and double-Holliday junctions (dHJs). This repair occurs using homologous templates rather than sister templates. This protocol, using Southern blotting, allows for the analysis and monitoring of changes in DNA structures in the recombination process. One-dimensional (1D) gel electrophoresis is employed to detect DSBs, COs, and NCOs, while two-dimensional (2D) gel electrophoresis is utilized to identify joint molecules (JMs). Therefore, physical analysis is considered the most effective method for investigating the HR mechanism. Our protocol provides more comprehensive information than previous reports by introducing conditions for obtaining a greater number of cells from synchronized yeast and a method that can analyze not only meiotic/mitotic recombination but also mitotic replication.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla , Meiose , Recombinação Homóloga , DNA
2.
J Microbiol ; 60(7): 705-714, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35781625

RESUMO

Ubiquitin is highly conserved in most eukaryotes and involved in diverse physiological processes, including cell division, protein quality control, and protein degradation mediated by the ubiquitin-proteasome system after heat shock, glucose-starvation, and oxidative stress. However, the role of the ubiquitin gene UBI4, which contains five consecutive head-to-tail ubiquitin repeats, in meiosis has not been investigated. In this study, we show that the Saccharomyces cerevisiae polyubiquitin precursor gene, UBI4, is required to promote synaptonemal complex (SC) formation and suppress excess double-strand break formation. Moreover, the proportion of Zip1 polycomplexes, which indicate abnormal SC formation, in cells with a mutation in UBI4 (i.e., ubi4Δ cells) is higher than that of wild-type cells, implying that the UBI4 plays an important role in the early meiotic prophase I. Interestingly, although ubi4Δ cells rarely form full-length SCs in the pachytene stage of prophase I, the Zip3 foci are still seen, as in wild-type cells. Moreover, ubi4Δ cells proficiently form crossover and noncrossover products with a slight delay compared to wild-type cells, suggesting that UBI4 is dispensable in SC-coupled recombination. Our findings demonstrate that UBI4 exhibits dual functions that are associated with both positive and negative roles in SC formation and recombination during meiosis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Meiose , Proteínas Nucleares/genética , Poliubiquitina/genética , Poliubiquitina/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Exp Neurobiol ; 19(1): 54-61, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22110342

RESUMO

We provide a novel method to infer finger flexing motions using a four-channel surface electromyogram (EMG). Surface EMG signals can be recorded from the human body non-invasively and easily. Surface EMG signals in this study were obtained from four channel electrodes placed around the forearm. The motions consist of the flexion of five single fingers (thumb, index finger, middle finger, ring finger, and little finger) and three multi.finger motions. The maximum likelihood estimation was used to infer the finger motions. Experimental results have shown that this method can successfully infer the finger flexing motions. The average accuracy was as high as 97.75%. In addition, we examined the influence of inference accuracies with the various arm postures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA