Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068627

RESUMO

Grapevine leaves contain abundant CaOx crystals located either within the mesophyll in the form of raphides, or in the bundle sheaths as druses. CaOx crystals function as internal carbon pools providing CO2 for a baseline level of photosynthesis, named "alarm photosynthesis", despite closed stomata; thus, preventing the photoinhibition and the oxidative risk due to carbon starvation under adverse conditions. Structural and functional leaf traits of acclimated grapevine plants (Vitis vinifera L. cv. Assyrtiko) were investigated in response to water availability, in order to evaluate the dynamic functionality of CaOx. Leaf water potential, leaf area, leaf mass per area, stomatal properties, gas exchange parameters and performance index (PI) were decreased in leaves of vines acclimated to water deficit in comparison to the leaves of well-irrigated vines, although the chlorophyll fluorescence parameters showed that the operational efficiency of the photosystem II (PSII) photochemistry (Fv/Fm) did not change, indicating that the photosynthetic apparatus was not subjected to water stress. During the afternoon, more than half of the morning's existing druses disappeared in the drought-acclimated leaves. Also, the raphides' area of the drought-acclimated leaves was reduced more than that of the well-watered leaves. The substantial decomposition of druses under water deficit conditions compared to that of the raphides may have important implications for the maintenance of their different though overlapping roles. According to the results, it seems likely that, under water deficit conditions, a mechanism of "alarm photosynthesis" provides an additional tolerance trait in the leaves of Vitis vinifera cv. Assyrtiko; hence, leaf structure relates to function.

2.
Plants (Basel) ; 12(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687290

RESUMO

This study focuses on Sternbergia lutea (L.) Ker Gawl. ex Spreng., a bulbous, perennial, autumnal flowering geophyte mainly distributed around the Mediterranean Basin. The seasonal content of total sugars, starch and proline in above- and below-ground plant parts in this study, which has hitherto not been the subject of a published study. Geophytes possess underground storage organs that support sprouting, leaf growth and flowering. Furthermore, their buds remain protected below the soil surface during periods of dormancy. Understanding the fluctuation of these compounds in S. lutea contributes to our knowledge of its adaptation to the Mediterranean ecosystem. It seems likely that monthly fluctuations in proline accumulation, sugar and starch content in both above- and below-ground tissues of S. lutea correspond to the distinct seasonality of the Mediterranean ecosystem. Elevated starch content was investigated in the bulbs, while lower starch content was estimated in the leaves. Substantial values of soluble sugar content have been detected in bulbs and leaves. Additionally, elevated sugar content was detected in the yellow petals of S. lutea in October. Pronounced proline accumulation was detected in the leaves and bulbs of S. lutea during its active and dormant phase, respectively.

3.
Front Plant Sci ; 14: 1167376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396645

RESUMO

The rapid increase in average temperatures and the progressive reduction in rainfalls caused by climate change is reducing crop yields worldwide, particularly in regions with hot and semi-arid climates such as the Mediterranean area. In natural conditions, plants respond to environmental drought stress with diverse morphological, physiological, and biochemical adaptations in an attempt to escape, avoid, or tolerate drought stress. Among these adaptations to stress, the accumulation of abscisic acid (ABA) is of pivotal importance. Many biotechnological approaches to improve stress tolerance by increasing the exogenous or endogenous content of ABA have proved to be effective. In most cases the resultant drought tolerance is associated with low productivity incompatible with the requirements of modern agriculture. The on-going climate crisis has provoked the search for strategies to increase crop yield under warmer conditions. Several biotechnological strategies, such as the genetic improvement of crops or the generation of transgenic plants for genes involved in drought tolerance, have been attempted with unsatisfactory results suggesting the need for new approaches. Among these, the genetic modification of transcription factors or regulators of signaling cascades provide a promising alternative. To reconcile drought tolerance with crop yield, we propose mutagenesis of genes controlling key signaling components downstream of ABA accumulation in local landraces to modulate responses. We also discuss the advantages of tackling this challenge with a holistic approach involving different knowledge and perspectives, and the problem of distributing the selected lines at subsidized prices to guarantee their use by small family farms.

4.
Plants (Basel) ; 12(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36771599

RESUMO

Ceratonia siliqua L. (carob tree) is an endemic plant to the eastern Mediterranean region. In the present study, anatomical and physiological traits of successively grown compound leaves (i.e., the first, third, fifth and seventh leaves) of C. siliqua were investigated in an attempt to evaluate their growth under urban and suburban environmental conditions. Chlorophyll and phenolic content, as well as the specific leaf area of the compound leaves were determined. Structural traits of leaflets (i.e., thickness of palisade and spongy parenchyma, abaxial and adaxial epidermis, as well as abaxial and adaxial periclinal wall) were also investigated in expanding and fully expanded leaflets. Fully expanded leaflets from urban sites exhibited increased thickness of the lamina and the palisade parenchyma, while the thickness of the spongy parenchyma was thicker in suburban specimens. The palisade tissue was less extended than the spongy tissue in expanding leaflets, while the opposite held true for the expanded leaflets. Moreover, the thickness of the adaxial and the abaxial epidermises, as well as the adaxial and abaxial periclinal wall were higher in suburban leaflets. The chlorophyll content increased concomitantly with the specific leaf area (SLA) of both expanding and expanded leaflets, and strong positive correlations were detected, while the phenolic content declined with the increased SLA of expanding and expanded leaflets. It is noteworthy that the SLA of expanding leaflets in the suburban site was comparable to the SLA of expanded leaflets experiencing air pollution in urban sites; the size and the mass of leaf blades of C. siliqua possess adaptive features to air pollution. These results, linked to the functional structure of expanding and expanded successive foliar tissues, provide valuable assessment information coordinated with an adaptive process and yield of carob trees exposed to the considered ambient conditions, which have not hitherto been published.

5.
Plants (Basel) ; 11(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501416

RESUMO

A special feature found in Amaryllidaceae is that some guard cells of the neighboring stomata form a "connection strand" between their dorsal cell walls. In the present work, this strand was studied in terms of both its composition and its effect on the morphology and function of the stomata in Pancratium maritimum L. leaves. The structure of stomata and their connection strand were studied by light and transmission electron microscopy. FM 4-64 and aniline blue staining and application of tannic acid were performed to detect cell membranes, callose, and pectins, respectively. A plasmolysis experiment was also performed. The composition of the connection strand was analyzed by fluorescence microscopy after immunostaining with several cell-wall-related antibodies, while pectinase treatment was applied to confirm the presence of pectins in the connection strand. To examine the effect of this connection on stomatal function, several morphological characteristics (width, length, size, pore aperture, stomatal distance, and cell size of the intermediate pavement cell) were studied. It is suggested that the connecting strand consists of cell wall material laid through the middle of the intermediate pavement cell adjoining the two stomata. These cell wall strands are mainly comprised of pectins, and crystalline cellulose and extensins were also present. Connected stomata do not open like the single stomata do, indicating that the connection strand could also affect stomatal function. This trait is common to other Amaryllidaceae representatives.

6.
Life (Basel) ; 12(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36556322

RESUMO

As the interest in natural, sustainable ecosystems arises in many fields, wild plant diversity is reconsidered. The present study is based on extant literature evidence from the journey of John Sibthorp (Professor of Botany, Oxford University) to Peloponnese (Greece) in pre-industrial time. In the year 1795, Peloponnese was a botanically unknown region, very dangerous for travellers and under civil unrest, in conjuncture with a pre-rebellion period. Our study reveals approximately 200 wild plant taxa that were collected from Peloponnese localities in 1795, transported to Oxford University (UK), and quoted in the magnificent edition Flora Graeca Sibthorpiana of the 19th century. Moreover, these plants currently constitute a living collection in Peloponnese, confirmed according to updated data on the vascular Flora of Greece. The presented lists constitute a source of information for plant biologists, linking the past to the present, shedding light on the study of adaptive traits of wild Mediterranean plants and revealing the temporal dimension of natural history. Nowadays, increasing and thorough understanding of the considered plants' functionality to abiotic and biotic environmental stimuli provides a new framework of sustainability and management options.

7.
Plants (Basel) ; 11(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36432814

RESUMO

The caper (Capparis spinosa L.) is a winter deciduous, perennial plant that grows and completes its life cycle entirely during the dry season in the Mediterranean region. Mature caper fruits and their pericarp, collected from the wild shrubs of the Capparis spinosa grown in the inland and coastal sites of Greece during summer, have been studied in order to improve and complete our knowledge of the successful establishment of the C. spinosa in Mediterranean ecosystems. Caper fruits possess substantial nutritional, medicinal and ecological properties that vary according to the developmental stage, agroclimatic and geographical parameters; however, the fruit pericarp and pedicel, unlike the other aboveground plant parts of the caper, have not hitherto been studied. The higher sugar and starch content in the pericarps and fruit pedicels harvested from wild caper plants grown in coastal habitats was investigated in comparison with those from inland habitats, while the higher proline and nitrogen content in pericarps and fruit pedicels harvested from wild caper plants grown in inland habitats was investigated in comparison with those from coastal habitats. The PCA, based on the considered functional traits underlying the constitutional aspects, reveals groupings of fruit pericarp specimens of the C. spinosa collected from coastal and inland habitats that are grounds for adaptive variation.

8.
Plants (Basel) ; 11(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35567255

RESUMO

The geophyte Cyclamen graecum is native to the eastern Mediterranean. Its beautiful flowers with upswept pink petals appear during early autumn, after the summer drought period and before leaf expansion in late autumn. The floral and leaf development alternates with their cessation in early winter and late spring, respectively. Ecophysiological parameters and processes underlining the life-cycle of C. graecum have not previously been published. Seasonal fluctuations of sugars, starch, and free proline have been investigated in tubers, leaves, pedicels, and petals, as well as petal and leaf water status. At the whole plant level, the seasonal co-existence of leaves and flowers is marked by an elevated soluble sugar content, which was gradually reduced as the above-ground plant parts shed. The sugar content of petals and pedicels was lower than that of leaves and tubers. Leaf starch content increased from late autumn to spring and was comparable to that of tubers. The starch content in petals and pedicels was substantially lower than that of tubers and leaves. In tubers, monthly proline accumulation was sustained at relatively constant values. Although the partitioning of proline in various organs did not show a considerable seasonal variation, resulting in an unchanged profile of the trends between tubers, leaves, and flowers, the seasonal differences in proline accumulation were remarkable at the whole plant level. The pronounced petal proline content during the flowering period seems to be associated with the maintenance of floral turgor. Leaf proline content increased with the advance of the growth season. The values of leaf relative water content were sustained fairly constant before the senescence stage, but lower than the typical values of turgid and transpiring leaves. Relationships of the studied parameters with rainfall indicate the responsiveness of C. graecum to water availability in its habitat in the Mediterranean ecosystem.

9.
Plants (Basel) ; 11(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35448741

RESUMO

In this study, leaf hydraulic functionality of co-occurring evergreen and deciduous shrubs, grown on Olympus Mountain, has been compared. Four evergreen species (Arbutus andrachne, Arbutus unedo, Quercus ilex and Quercus coccifera) and four deciduous species (Carpinus betulus, Cercis siliquastrum, Coronilla emeroides and Pistacia terebinthus) were selected for this study. Predawn and midday leaf water potential, transpiration, stomatal conductance, leaf temperature and leaf hydraulic conductance were estimated during the summer period. The results demonstrate different hydraulic tactics between the deciduous and evergreen shrubs. Higher hydraulic conductance and lower stomatal conductance were obtained in deciduous plants compared to the evergreens. Additionally, positive correlations were detected between water potential and transpiration in the deciduous shrubs. The seasonal leaf hydraulic conductance declined in both deciduous and evergreens under conditions of elevated vapor pressure deficit during the summer; however, at midday, leaf water potential reached comparable low values, but the deciduous shrubs exhibited higher hydraulic conductance compared to the evergreens. It seems likely that hydraulic traits of the coexisting evergreen and deciduous plants indicate water spending and saving tactics, respectively; this may also represent a limit to drought tolerance of these species grown in a natural environment, which is expected to be affected by global warming.

10.
Integr Zool ; 5(3): 218-25, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21392340

RESUMO

The visualization of the surface of biological samples using an atomic force microscope reveals features of the external relief and can resolve very fine and detailed features of the surface. We examined specimens from the skin of the amphibians Salamandra salamandra Linnaeus, 1758, Lyciasalamandra luschani basoglui Baran & Atatür, 1980 and Mesotriton alpestris Laurenti, 1768, and from the surface of pollen grains of the plant species Cyclamen graecum Link, 1835 and Cistus salviifolius Linnaeus, 1753, which exhibit certain interesting features, imaged at the nanoscale level. It is likely that the relief influences the attributes of the interfaces between the tissues and the environment. We found that the microsculpture increases in size the surface of the examined tissues and this might be particularly important for their performance in the field. Microsculpturing of amphibians' skin may affect water regulation, dehydration and rehydration, and cutaneous gas exchange. Pollen grain relief might affect the firmness of the contact between pollen surface and water droplets. High resolution imaging of the external relief showed that roughening might induce wetting and influence the water status of the specimens. In addition, roughness affects the radius of water droplets retained in between the projections of the external relief. Roughness of the tissues was highly correlated with their vertical distance, whereas surface distances were highly correlated with horizontal distances. By enabling a more detailed characterization of the external sculptures, through sophisticated techniques, a more comprehensive examination of the samples indicates similarities among different living tissues, originated from different kingdoms, which can be attributed to environmental conditions and physiological circumstances.


Assuntos
Microscopia de Força Atômica/métodos , Fenômenos Fisiológicos da Pele , Pele/citologia , Urodelos/fisiologia , Animais , Propriedades de Superfície
11.
J Exp Bot ; 55(403): 1601-6, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15258173

RESUMO

The victors of the Olympic Games in ancient Greece were awarded crowns made of olive branches. In Antiquity, the symbolism of plants was related to myths, properties, aesthetic values, and civilization. Theophrastus first classifies and identifies plants, and gathers information about them, in his classic books (4th century BC). Symbolic plants are native to the Mediterranean region and they exhibit some convergent behaviour with respect to their functional characteristics. These plants were collected (among other species) by Professor J. Sibthorp and his partners in two botanical journeys in the Levant during the 18th century, and they have been illustrated for Flora Graeca Sibthorpiana.


Assuntos
Plantas , Esportes/história , Simbolismo , Grécia , História do Século XVIII , História Antiga , Olea
12.
Ann Bot ; 92(3): 377-83, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12853284

RESUMO

Capparis spinosa (caper), a winter-deciduous perennial shrub, is a consistent floristic element of Mediterranean ecosystems, growing from May to October, i.e. entirely during the prolonged summer drought. The internal architecture of young and fully expanded leaves was studied, along with certain physiological characteristics. Capparis spinosa possesses thick, amphistomatic and homobaric leaves with a multilayered mesophyll. The latter possesses an increased number of photosynthesizing cells per unit leaf surface, a large surface area of mesophyll cells facing intercellular spaces (Smes) and a low percentage of intercellular space per tissue volume. Smes and chlorophyll content attain their maximum values synchronously, slightly before full leaf expansion. Nitrogen investment is also completed before full leaf expansion. The structural features, in combination with the water status, could contribute to enhanced rates of transpiration and photosynthesis under field water shortage conditions.


Assuntos
Capparis/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Adaptação Fisiológica , Capparis/anatomia & histologia , Capparis/fisiologia , Metabolismo dos Carboidratos , Carbono/metabolismo , Diferenciação Celular , Clorofila/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Prolina/metabolismo , Amido/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA