Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463049

RESUMO

HIV-1 persists in a latent reservoir in resting CD4+ T cells despite antiretroviral therapy (ART). The reservoir decays slowly over the first 7 years of ART (t1/2 = 44 months). However, whether decay continues with long-term ART is unclear. Recent integration site studies indicate gradual selection against inducible, intact proviruses, raising speculation that decades of ART might allow treatment interruption without viral rebound. Therefore, we measured the reservoir in 42 people on long-term ART (mean 22 years) using a quantitative viral outgrowth assay. After 7 years of ART, there was no long-term decrease in the frequency of inducible, replication-competent proviruses but rather an increase with an estimated doubling time of 23 years. Another reservoir assay, the intact proviral DNA assay, confirmed that reservoir decay with t1/2 of 44 months did not continue with long-term ART. The lack of decay reflected proliferation of infected cells. Most inducible, replication-competent viruses (79.8%) had env sequences identical to those of other isolates from the same sample. Thus, although integration site analysis indicates changes in reservoir composition, the proliferation of CD4+ T cells counteracts decay, maintaining the frequency of inducible, replication-competent proviruses at roughly constant levels over the long term. These results reinforce the need for lifelong ART.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Replicação Viral , Provírus/genética , Linfócitos T CD4-Positivos , Carga Viral , Latência Viral
2.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36602866

RESUMO

BackgroundAntiretroviral therapy (ART) halts HIV-1 replication, decreasing viremia to below the detection limit of clinical assays. However, some individuals experience persistent nonsuppressible viremia (NSV) originating from CD4+ T cell clones carrying infectious proviruses. Defective proviruses represent over 90% of all proviruses persisting during ART and can express viral genes, but whether they can cause NSV and complicate ART management is unknown.MethodsWe undertook an in-depth characterization of proviruses causing NSV in 4 study participants with optimal adherence and no drug resistance. We investigated the impact of the observed defects on 5'-leader RNA properties, virus infectivity, and gene expression. Integration-site specific assays were used to track these proviruses over time and among cell subsets.ResultsClones carrying proviruses with 5'-leader defects can cause persistent NSV up to approximately 103 copies/mL. These proviruses had small, often identical deletions or point mutations involving the major splicing donor (MSD) site and showed partially reduced RNA dimerization and nucleocapsid binding. Nevertheless, they were inducible and produced noninfectious virions containing viral RNA, but lacking envelope.ConclusionThese findings show that proviruses with 5'-leader defects in CD4+ T cell clones can give rise to NSV, affecting clinical care. Sequencing of the 5'-leader can help in understanding failure to completely suppress viremia.FundingOffice of the NIH Director and National Institute of Dental and Craniofacial Research, NIH; Howard Hughes Medical Institute; Johns Hopkins University Center for AIDS Research; National Institute for Allergy and Infectious Diseases (NIAID), NIH, to the PAVE, BEAT-HIV, and DARE Martin Delaney collaboratories.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus/genética , Provírus/metabolismo , HIV-1/genética , HIV-1/metabolismo , Viremia/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Linfócitos T CD4-Positivos , RNA Viral/genética , RNA Viral/metabolismo
3.
Bio Protoc ; 12(6): e4351, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35434193

RESUMO

Analysis of DNA double strand breaks (DSBs) is important for understanding dyshomeostasis within the nucleus, impaired DNA repair mechanisms, and cell death. In the C. elegans germline, DSBs are important indicators of all three above-mentioned conditions. Although multiple methods exist to assess apoptosis in the germline of C. elegans, direct assessment of DSBs without the need for a reporter allele or protein-specific antibody is useful. As such, unbiased immunofluorescent approaches can be favorable. This protocol details a method for using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) to assess DNA DSBs in dissected C. elegans germlines. Germlines are co-labeled with DAPI to allow for easy assessment of DNA DSBs. This approach allows for qualitative or quantitative measures of DNA DSBs. Graphic abstract: Schematic for TUNEL labeling of C. elegans germlines.

4.
PLoS Genet ; 17(8): e1009771, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34449775

RESUMO

Multiple Mitochondrial Dysfunctions Syndrome 1 (MMDS1) is a rare, autosomal recessive disorder caused by mutations in the NFU1 gene. NFU1 is responsible for delivery of iron-sulfur clusters (ISCs) to recipient proteins which require these metallic cofactors for their function. Pathogenic variants of NFU1 lead to dysfunction of its target proteins within mitochondria. To date, 20 NFU1 variants have been reported and the unique contributions of each variant to MMDS1 pathogenesis is unknown. Given that over half of MMDS1 individuals are compound heterozygous for different NFU1 variants, it is valuable to investigate individual variants in an isogenic background. In order to understand the shared and unique phenotypes of NFU1 variants, we used CRISPR/Cas9 gene editing to recreate exact patient variants of NFU1 in the orthologous gene, nfu-1 (formerly lpd-8), in C. elegans. Five mutant C. elegans alleles focused on the presumptive iron-sulfur cluster interaction domain were generated and analyzed for mitochondrial phenotypes including respiratory dysfunction and oxidative stress. Phenotypes were variable between the mutant nfu-1 alleles and generally presented as an allelic series indicating that not all variants have lost complete function. Furthermore, reactive iron within mitochondria was evident in some, but not all, nfu-1 mutants indicating that iron dyshomeostasis may contribute to disease pathogenesis in some MMDS1 individuals.


Assuntos
Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Doenças Mitocondriais/genética , Alelos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Ferro/metabolismo , Mitocôndrias/genética , Doenças Mitocondriais/fisiopatologia , Proteínas Mitocondriais/genética , Mutação , Fenótipo , Conformação Proteica , Multimerização Proteica , Estresse Fisiológico/genética , Enxofre/metabolismo
5.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301425

RESUMO

Clonal expansion of infected CD4+ T cells is a major mechanism of HIV-1 persistence and a barrier to achieving a cure. Potential causes are homeostatic proliferation, effects of HIV-1 integration, and interaction with antigens. Here, we show that it is possible to link antigen responsiveness, the full proviral sequence, the integration site, and the T cell receptor ß-chain (TCRß) sequence to examine the role of recurrent antigenic exposure in maintaining the HIV-1 reservoir. We isolated CMV- and Gag-responding CD4+ T cells from 10 treated individuals. Proviral populations in CMV-responding cells were dominated by large clones, including clones harboring replication-competent proviruses. TCRß repertoires showed high clonality driven by converging adaptive responses. Although some proviruses were in genes linked to HIV-1 persistence (BACH2, STAT5B, MKL1), the proliferation of infected cells under antigenic stimulation occurred regardless of the site of integration. Paired TCRß and integration site analysis showed that infection could occur early or late in the course of a clone's response to antigen and could generate infected cell populations too large to be explained solely by homeostatic proliferation. Together, these findings implicate antigen-driven clonal selection as a major factor in HIV-1 persistence, a finding that will be a difficult challenge to eradication efforts.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Seleção Clonal Mediada por Antígeno , Infecções por HIV/imunologia , HIV-1/fisiologia , Integração Viral/imunologia , Latência Viral/imunologia , Adulto , Linfócitos T CD4-Positivos/patologia , Feminino , Infecções por HIV/terapia , Humanos , Masculino , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
6.
Mech Dev ; 153: 42-53, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144508

RESUMO

Germline stem cells are maintained in the distal region of the C. elegans gonad. These cells undergo mitotic divisions, and GLP-1/Notch signaling dictates whether they remain in this state. The somatic distal tip cell (DTC) caps the end of the distal gonad and is essential for maintenance of the germline mitotic zone. As germ cells move away from the DTC they exit mitosis and enter early meiotic prophase. Here we identify the Period protein homolog LIN-42 as a new regulator of germline development in C. elegans. LIN-42 is expressed in almost all somatic cells including the DTC, and LIN-42 functions as a transcription factor in the heterochronic pathway and to regulate molting. We found that the mitotic proliferative zone size in the distal gonad was significantly reduced by ~25% in lin-42 mutants compared to WT N2 worms. A lin-42 mutation also reduced the mitotic proliferative zone size caused by glp-1 partial loss-of-function and gain-of-function alleles. LIN-42 mediates this effect, at least in part, by regulating expression of the GLP-1/Notch ligand LAG-2. We further show that lin-42 expression itself is regulated by ATX-2, which promotes germline proliferation and is the homolog of the RNA binding protein ataxin-2 that is implicated in human neurodegenerative diseases. Altogether our results establish a new role for the conserved, important Period protein homolog LIN-42 in regulating early germline development. These results also suggest that in addition to regulating behavioral rhythms, the circadian clock plays an important role in communicating environmental signals to essential reproductive pathways.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Mitose , Fenótipo , Receptores Notch/metabolismo , Transdução de Sinais/genética , Transcrição Gênica
7.
G3 (Bethesda) ; 8(8): 2617-2629, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29880558

RESUMO

The Caenorhabditis elegans (C. elegans) heterochronic pathway, which regulates developmental timing, is thought to be an ancestral form of the circadian clock in other organisms. An essential member of this clock is the Period protein whose homolog, lin-42, in C. elegans is an important heterochronic gene. LIN-42 functions as a transcriptional repressor of multiple genes including the conserved lin-4 and let-7 microRNAs. Like other Period proteins, levels of LIN-42 oscillate throughout development. In other organisms this cycling is controlled in part by phosphorylation. KIN-20 is the C. elegans homolog of the Drosophila Period protein kinase Doubletime. Worms containing a large deletion in kin-20 have a significantly smaller brood size and develop slower than wild type C. elegans Here we analyze the effect of kin-20 on lin-42 phenotypes and microRNA expression. We find that kin-20 RNAi enhances loss-of-function lin-42 mutant phenotypes and that kin-20 mutant worms express lower levels of LIN-42 We also show that kin-20 is important for post-transcriptional regulation of mature let-7 and lin-4 microRNA expression. In addition, the increased level of let-7 found in lin-42(n1089) mutant worms is not maintained after kin-20 RNAi treatment. Instead, let-7 is further repressed when levels of kin-20 and lin-42 are both decreased. Altogether these results suggest that though kin-20 regulates lin-42 and let-7 microRNA, it mainly affects let-7 microRNA expression independently of lin-42 These findings further our understanding of the mechanisms by which these conserved circadian rhythmic genes interact to ultimately regulate rhythmic processes, developmental timing and microRNA biogenesis in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caseína Quinase I/metabolismo , Caseína Quinase Idelta/metabolismo , MicroRNAs/genética , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Caseína Quinase I/genética , Caseína Quinase Idelta/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA