RESUMO
BACKGROUND: Sanitary quality of recreational waters worldwide is assessed using fecal indicator bacteria (FIB), such as Escherichia coli and enterococci. However, fate and transport characteristics of FIB in aquatic habitats can differ from those of viral pathogens which have been identified as main etiologic agents of recreational waterborne illness. Coliphages (bacteriophages infecting E. coli) are an attractive alternative to FIB because of their many morphological and structural similarities to viral pathogens. METHODS: In this in situ field study, we used a submersible aquatic mesocosm to compare decay characteristics of somatic and F+ coliphages to those of infectious human adenovirus 2 in a freshwater lake. In addition, we also evaluated the effect of ambient sunlight (and associated UV irradiation) and indigenous protozoan communities on decay of somatic and F+ coliphage, as well as infectious adenovirus. RESULTS: Our results show that decay of coliphages and adenovirus was similar (p = 0.0794), indicating that both of these bacteriophage groups are adequate surrogates for decay of human adenoviruses. Overall, after 8 days the greatest log10 reductions were observed when viruses were exposed to a combination of biotic and abiotic factors (2.92 ± 0.39, 4.48 ± 0.38, 3.40 ± 0.19 for somatic coliphages, F+ coliphages and adenovirus, respectively). Both, indigenous protozoa and ambient sunlight, were important contributors to decay of all three viruses, although the magnitude of that effect differed over time and across viral targets. CONCLUSIONS: While all viruses studied decayed significantly faster (p < 0.0001) when exposed to ambient sunlight, somatic coliphages were particularly susceptible to sunlight irradiation suggesting a potentially different mechanism of UV damage compared to F+ coliphages and adenoviruses. Presence of indigenous protozoan communities was also a significant contributor (p value range: 0.0016 to < 0.0001) to decay of coliphages and adenovirus suggesting that this rarely studied biotic factor is an important driver of viral reductions in freshwater aquatic habitats.
Assuntos
Adenovírus Humanos , Colífagos , Água Doce/parasitologia , Água Doce/virologia , Luz Solar , Biota , Monitoramento Ambiental , Fezes/virologia , Lagos/parasitologia , Lagos/virologiaRESUMO
Ultrafiltration concentration of microorganisms in large volume water samples containing high levels of particulate matter was evaluated in a proof of concept study. The organisms tested were Bacillus atrophaeus subspecies globigii spores and MS2 bacteriophage. To produce the large volume samples, fresh water sediment of a known particle size was added to 51â¯l of tap water. Five different concentrations of particulate matter were studied: 0, 50, 100, 150 and 750â¯mg solids/l. The concentration procedure used a dialysis filter as the ultrafilter configured for axial flow, either with or without recirculation. The target number of organisms spiked was 1â¯×â¯105 of either spores or bacteriophage per 51â¯l. After concentration, the filters were dissected to retrieve the fibers which were then washed using surfactant solution which was then analyzed for the target organisms. Two washes of the filter fibers were carried out sequentially. For axial flow with recirculation, the first wash produced statistically greater recovery of B. globigii spores (26-40% of spike) compared to the second wash (8-13% of spike). Total recovery (the sum of the recoveries for the first and second washes) ranged from 35 to 53%. Recovery increased as the solids level increased from 0 to 150â¯mg solids/l. Recovery at the 100 and 150â¯mg solids/L loadings was statistically higher at the Pâ¯<â¯.05 level than recovery at 0â¯mg/L solids. At 150â¯mg solids/L, axial flow without recirculation (dead end) yielded lower recovery than axial flow with recirculation, however the difference was not significant at the Pâ¯<â¯.05 level. Recovery of B. globigii at 750â¯mg solids/L averaged 38% using dead end axial flow. The average recovery of MS2 bacteriophage was 45% at a solids concentration of 150â¯mg/L using axial flow with recirculation. PhiX174 and Phi8 were also studied, however these bacteriophage appeared to be inactivated in the matrix of concentrated wash water. One hundred liters of water containing 750â¯mg solids/L was concentrated using dead end axial flow, and only minimal problems with filter clogging were observed. Results described herein suggest axial flow ultrafiltration is an effective concentration method for microorganisms in water containing high levels of particulate matter.
Assuntos
Bacillus/isolamento & purificação , Levivirus/isolamento & purificação , Rios/microbiologia , Ultrafiltração/métodos , Purificação da Água/métodos , Ohio , Material Particulado , Microbiologia da ÁguaRESUMO
Coliphages are alternative fecal indicators that may be suitable surrogates for viral pathogens, but majority of standard detection methods utilize insufficient volumes for routine detection in environmental waters. We compared three somatic and F+ coliphage methods based on a paired measurement from 1 L samples collected from the Great Lakes (n = 74). Methods include: 1) dead-end hollow fiber ultrafilter with single agar layer (D-HFUF-SAL); 2) modified SAL (M-SAL); and 3) direct membrane filtration (DMF) technique. Overall, D-HFUF-SAL outperformed other methods as it yielded the lowest frequency of non-detects [(ND); 10.8%] and the highest average concentrations of recovered coliphage for positive samples (2.51 ± 1.02 [standard deviation, SD] log10 plaque forming unit/liter (PFU/L) and 0.79 ± 0.71 (SD) log10 PFU/L for somatic and F+, respectively). M-SAL yielded 29.7% ND and average concentrations of 2.26 ± 1.15 (SD) log10 PFU/L (somatic) and 0.59 ± 0.82 (SD) log10 PFU/L (F+). DMF performance was inferior to D-HFUF-SAL and M-SAL methods (ND of 65.6%; average somatic coliphage concentration 1.52 ± 1.32 [SD] log10 PFU/L, no F+ detected), indicating this procedure is unsuitable for 1 L surface water sample volumes. This study represents an important step toward the use of a coliphage method for recreational water quality criteria purposes.
Assuntos
Colífagos/isolamento & purificação , Lagos/virologia , Carga Viral/métodos , Great Lakes Region , Qualidade da ÁguaRESUMO
Somatic and F+ coliphages are promising alternative fecal indicators, but current detection methods are hindered by lower levels of coliphages in surface waters compared to traditional bacterial fecal indicators. We evaluated the ability of dead-end hollow fiber ultrafiltration (D- HFUF) and single agar layer (SAL) procedure to concentrate and enumerate coliphages from 1L and 10L volumes of ambient surface waters (lake, river, marine), river water with varying turbidities (3.74-118.7 NTU), and a simulated combined sewer overflow (CSO) event. Percentage recoveries for surface waters were 40-79% (somatic) and 35-94% (F+). The method performed equally well in all three matrices at 1L volumes, but percent recoveries were significantly higher in marine waters at 10L volumes when compared to freshwater. Percent recoveries at 1L and 10L were similar, except in river water where recoveries were significantly lower at higher volume. In highly turbid waters, D-HFUF-SAL had a recovery range of 25-77% (somatic) and 21-80% (F+). The method produced detectable levels of coliphages in diluted wastewater and in unspiked surface waters, emphasizing its applicability to CSO events and highlighting its utility in recovery of low coliphage densities from surface waters. Thus D-HFUF-SAL is a good candidate method for routine water quality monitoring of coliphages.
Assuntos
Colífagos/isolamento & purificação , Água Doce/virologia , Rios/virologia , Ultrafiltração/métodos , Microbiologia da Água , Ágar , Monitoramento Ambiental/métodos , Fezes/microbiologia , Fezes/virologia , Água do Mar/virologia , Águas Residuárias/microbiologia , Águas Residuárias/virologiaRESUMO
Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate for human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a propagation method that utilizes a commercially available medium to produce UV tolerant B. pumilus endospores with a consistent UV sensitivity. It is further demonstrated that the endospores of B. pumilus strain (ATCC 27142), produced using this protocol (half strength Columbia broth, 5 days incubation, with 0.1mM MnSO4), display a UV dose-response that is similar to that of HAdV. Endospore stocks could be stored in ethanol for up to two months at 4 °C without a significant change in UV sensitivity. Synergistic endospore damage was observed by pre-heat treatment of water samples followed by UV irradiation. UV tolerant B. pumilus endospores are a potential surrogate of HAdV for UV treatment performance tests in water utilities which do not have in-house research virology laboratories.
Assuntos
Adenovírus Humanos/efeitos da radiação , Bacillus/efeitos da radiação , Esporos Bacterianos/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Linhagem Celular , Desinfecção/métodos , Relação Dose-Resposta à Radiação , Escherichia coli/efeitos da radiação , Temperatura Alta , Humanos , Levivirus/efeitos da radiação , Tolerância a Radiação , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Raios Ultravioleta , Microbiologia da Água , Purificação da Água/métodosRESUMO
The collection of waterborne pathogen occurrence data often requires the concentration of microbes from large volumes of water due to the low number of microorganisms that are typically present in environmental and drinking waters. Hollow-fiber ultrafiltration (HFUF) has shown promise in the recovery of various microorganisms. This study has demonstrated that the HFUF primary concentration method is effective at recovering bacteriophage φX174, poliovirus, enterovirus 70, echovirus 7, coxsackievirus B4 and adenovirus 41 from large volumes of tap and river water with an average recovery of all viruses of 73.4% and 81.0%, respectively. This study also evaluated an effective secondary concentration method using celite for the recovery of bacteriophage and enteric viruses tested from HFUF concentrates of both matrices. Overall, the complete concentration method (HFUF primary concentration plus celite secondary concentration) resulted in a concentration factor of 3333 and average recoveries for all viruses from tap and river waters of 60.6% and 60.0%, respectively.
Assuntos
Adenoviridae/isolamento & purificação , Bacteriófagos/isolamento & purificação , Terra de Diatomáceas , Enterovirus/isolamento & purificação , Microbiologia da Água , Bacteriófago phi X 174/isolamento & purificação , Água Potável/virologia , Água Doce/virologia , Poliovirus/isolamento & purificação , Ultrafiltração/instrumentação , Ultrafiltração/métodos , Purificação da Água/instrumentação , Purificação da Água/métodosRESUMO
Biosolids are nutrient-rich organic residuals that are currently used to amend soils for food production. Treatment requirements to inactivate pathogens for production of Class A biosolids are energy intensive. One less energy intensive alternative is to treat biosolids to Class B standards, but it could result in higher pathogen loads. Quantitative microbial risk assessments models have been developed on land application of Class B biosolids but contain many uncertainties because of limited data on specific pathogen densities and the use of fecal indicator organisms as accurate surrogates of pathogen loads. To address this gap, a 12-mo study of the levels and relationships between , , and human adenovirus (HAdV) with fecal coliform, somatic, and F-RNA coliphage levels in Class B biosolids from nine wastewater treatment plants throughout the United States was conducted. Results revealed that fecal coliform, somatic, and F-RNA coliphage densities were consistent throughout the year. More important, results revealed that HAdV ( = 2.5 × 10 genome copies dry g) and ( = 4.14 × 10 cysts dry g) were in all biosolids samples regardless of treatment processes, location, or season. oocysts were also detected (38% positive; range: 0-1.9 × 10 oocysts dry g), albeit sporadically. Positive correlations among three fecal indicator organisms and HAdV, but not protozoa, were also observed. Overall, this study reveals that high concentrations of enteric pathogens (e.g., , , and HAdV) are present in biosolids throughout the United States. Microbial densities found can further assist management and policymakers in establishing more accurate risk assessment models associated with land application of Class B biosolids.
RESUMO
The objective of this study was to compare three nucleic acid extraction and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) approaches for norovirus (NoV) detection in drinking water with respect to performance, costs, and analysis time. The approaches evaluated were: (A) an approach that utilizes the QIAamp DNA Blood Mini Kit and multiplex primers and probes for detection; (B) a procedure which includes the NucliSENS Magnetic Extraction Kit and other components of a proposed European Union standard method for NoV detection in foods; and (C) a commercialized assay which uses NucliSENS extraction and Cepheid SmartCycler® technologies. Each approach was evaluated by most probable number (MPN) analysis for detection of GI.1 and GII.4 NoVs from human stool. Furthermore, recoveries of spiked primary effluent in tap water concentrates were compared for each approach. Few significant differences were observed between approaches with regard to performance. However, Approach C was the most time consuming and expensive to perform. This research presents a case study of how molecular-based approaches for detection of NoVs can be compared and how various factors may play a role in which approach laboratories choose to employ.
Assuntos
Água Potável/virologia , Norovirus/classificação , Norovirus/isolamento & purificação , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fezes/virologia , Humanos , Norovirus/genética , Virologia/métodosRESUMO
Enteroviruses, noroviruses and adenoviruses are among the most common viruses infecting humans worldwide. These viruses are shed in the feces of infected individuals and can accumulate in wastewater, making wastewater a source of a potentially diverse group of enteric viruses. In this study, two procedures were evaluated to concentrate noroviruses, adenoviruses and enteroviruses from primary effluent of wastewater. In the first procedure, indigenous enteroviruses, noroviruses and adenoviruses were concentrated using celite (diatomaceous earth) followed by centrifugation through a 30K MWCO filter and nucleic acid extraction. The second procedure used celite concentration followed by nucleic acid extraction only. Virus quantities were measured using qPCR. A second set of primary effluent samples were seeded with Coxsackievirus A7, Coxsackievirus B1, poliovirus 1 or enterovirus 70 before concentration and processed through both procedures for recovery evaluation of enterovirus species representatives. The pairing of the single step extraction procedure with the celite concentration process resulted in 47-98% recovery of examined viruses, while the celite concentration process plus additional centrifugal concentration before nucleic acid extraction showed reduced recovery (14-47%). The celite concentration process followed by a large volume nucleic acid extraction technique proved to be an effective procedure for recovering these important human pathogens from wastewater.
Assuntos
Adenovírus Humanos/isolamento & purificação , Terra de Diatomáceas/química , Enterovirus/isolamento & purificação , Norovirus/isolamento & purificação , Virologia/métodos , Águas Residuárias/virologia , Centrifugação/métodos , Filtração/métodos , Humanos , Ácidos Nucleicos/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo RealRESUMO
The U.S. EPA developed a sample concentration and preparation assay in conjunction with the total culturable virus assay for concentrating and measuring culturable viruses in source and drinking waters as part of the Information Collection Rule (ICR) promulgated in 1996. In an effort to improve upon this method, the U.S. EPA recently developed Method 1615: Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Method 1615 uses a culturable virus assay with reduced equipment and labor costs compared to the costs associated with the ICR virus method and introduces a new molecular assay for the detection of enteroviruses and noroviruses by reverse transcription-quantitative PCR. In this study, we describe the optimization of several new components of the molecular assay and examine virus recovery from ground, reagent-grade, and surface water samples seeded with poliovirus type 3 and murine norovirus. For the culturable virus and molecular assays, mean poliovirus recovery using the complete method was 58% and 20% in groundwater samples, 122% and 39% using low-titer spikes in reagent-grade water, 42% and 48% using high-titer spikes in reagent-grade water, and 11% and 10% in surface water with high turbidity, respectively. Murine norovirus recovery by the molecular assay was 30% in groundwater samples, less than 8% in both low- and high-titer spikes in reagent-grade water, and 6% in surface water with high turbidity. This study demonstrates the effectiveness of Method 1615 for use with groundwater samples and highlights the need for further research into its effectiveness with surface water.
Assuntos
Norovirus/isolamento & purificação , Poliovirus/isolamento & purificação , Virologia/métodos , Microbiologia da Água , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Cultura de Vírus/métodosRESUMO
Cryptosporidium and Giardia species are two of the most prevalent protozoa that cause waterborne diarrheal disease outbreaks worldwide. To better characterize the prevalence of these pathogens, EPA Method 1623 was developed and used to monitor levels of these organisms in US drinking water supplies (12). The method has three main parts; the first is the sample concentration in which at least 10 L of raw surface water is filtered. The organisms and trapped debris are then eluted from the filter and centrifuged to further concentrate the sample. The second part of the method uses an immunomagnetic separation procedure where the concentrated water sample is applied to immunomagnetic beads that specifically bind to the Cryptosporidium oocysts and Giardia cysts allowing for specific removal of the parasites from the concentrated debris. These (oo)cysts are then detached from the magnetic beads by an acid dissociation procedure. The final part of the method is the immunofluorescence staining and enumeration where (oo)cysts are applied to a slide, stained, and enumerated by microscopy. Method 1623 has four listed sample concentration systems to capture Cryptosporidium oocysts and Giardia cysts in water: Envirochek filters (Pall Corporation, Ann Arbor, MI), Envirochek HV filters (Pall Corporation), Filta-Max filters (IDEXX, Westbrook, MA), or Continuous Flow Centrifugation (Haemonetics, Braintree, MA). However, Cryptosporidium and Giardia (oo)cyst recoveries have varied greatly depending on the source water matrix and filters used(1,14). A new tangential flow hollow-fiber ultrafiltration (HFUF) system has recently been shown to be more efficient and more robust at recovering Cryptosporidium oocysts and Giardia cysts from various water matrices; moreover, it is less expensive than other capsule filter options and can concentrate multiple pathogens simultaneously(1-3,5-8,10,11). In addition, previous studies by Hill and colleagues demonstrated that the HFUF significantly improved Cryptosporidium oocysts recoveries when directly compared with the Envirochek HV filters(4). Additional modifications to the current methods have also been reported to improve method performance. Replacing the acid dissociation procedure with heat dissociation was shown to be more effective at separating Cryptosporidium from the magnetic beads in some matrices(9,13) . This protocol describes a modified Method 1623 that uses the new HFUF filtration system with the heat dissociation step. The use of HFUF with this modified Method is a less expensive alternative to current EPA Method 1623 filtration options and provides more flexibility by allowing the concentration of multiple organisms.
Assuntos
Cryptosporidium/isolamento & purificação , Giardia/isolamento & purificação , Parasitologia/métodos , Ultrafiltração/métodos , Água/parasitologia , Abastecimento de ÁguaRESUMO
Tangential flow hollow-fiber ultrafiltration (HFUF) was evaluated for virus and Cryptosporidium parvum concentration from water. Recovery of viruses at a low filtration rate was found to be significantly greater than at a higher filtration rate, with the recoveries of bacteriophage MS2 at high and low filtration rates shown to be 64.7% and 98.7%, respectively. Poliovirus recoveries from tap water were similar to MS2, with recoveries of 62.9% and 104.5% for high and low filtration rates, respectively. C. parvum, which was only tested at high filtration rates, had an average recovery was 105.1%. In addition to the optimization of the primary concentration technique, this study also compared several secondary concentration procedures. The highest recovery (89.5%) of poliovirus from tap water concentrates was obtained when a beef extract-celite method was used and the virus was eluted from the celite with phosphate buffered saline, pH 9.0. When HFUF primary concentration and the optimal secondary concentration methods were combined, an average recovery of 97.0 ± 35.6% or 89.3 ± 19.3%, depending on spike level, was achieved for poliovirus. This study demonstrated that HFUF primary concentration method is effective at recovering MS2, poliovirus and C. parvum from large volumes of water and that beef extract-celite method is an effective secondary concentration method for the poliovirus tested.
Assuntos
Cryptosporidium parvum/isolamento & purificação , Levivirus/isolamento & purificação , Poliovirus/isolamento & purificação , Ultrafiltração/métodos , Microbiologia da Água , Animais , Terra de Diatomáceas , Camundongos , Ultrafiltração/instrumentação , Purificação da Água/métodos , Abastecimento de ÁguaRESUMO
The U.S. Environmental Protection Agency's information collection rule requires the use of 1MDS electropositive filters for concentrating enteric viruses from water, but unfortunately, these filters are not cost-effective for routine viral monitoring. In this study, an inexpensive electropositive cartridge filter, the NanoCeram filter, was evaluated for its ability to concentrate enteroviruses and noroviruses from large volumes of water. Seeded viruses were concentrated using the adsorption-elution procedure. The mean percent retention of seeded polioviruses by NanoCeram filters was 84%. To optimize the elution procedure, six protocols, each comprising two successive elutions with various lengths of filter immersion, were evaluated. The highest virus recovery (77%) was obtained by immersing the filters in beef extract for 1 minute during the first elution and for 15 min during the second elution. The recovery efficiencies of poliovirus, coxsackievirus B5, and echovirus 7 from 100-liter samples of seeded tap water were 54%, 27%, and 32%, respectively. There was no significant difference in virus recovery from tap water with a pH range of 6 to 9.5 and a water flow rate range of 5.5 liters/min to 20 liters/min. Finally, poliovirus and Norwalk virus recoveries by NanoCeram filters were compared to those by 1MDS filters, using tap water and Ohio River water. Poliovirus and Norwalk virus recoveries by NanoCeram filters from tap and river water were similar to or higher than those by the 1MDS filters. These data suggest that NanoCeram filters can be used as an inexpensive alternative to 1MDS filters for routine viral monitoring of water.
Assuntos
Enterovirus/isolamento & purificação , Filtração/métodos , Norovirus/isolamento & purificação , Virologia/métodos , Microbiologia da Água , Concentração de Íons de Hidrogênio , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estados UnidosRESUMO
Actinobacillus actinomycetemcomitans requires iron to grow under limiting conditions imposed by synthetic and natural chelators. Although none of the strains tested used hemoglobin, lactoferrin or transferrin, all of them used FeCl3 and hemin as iron sources under chelated conditions. Dot-blot binding assays showed that all strains bind lactoferrin, hemoglobin, and hemin but not transferrin. When compared with smooth strains, the rough isolates showed higher hemin binding activity, which was sensitive to proteinase K treatment. A. actinomycetemcomitans harbors the Fur-regulated afeABCD locus coding for iron acquisition in isogenic and non-isogenic cell backgrounds. The genome of this oral pathogen also harbors several other predicted iron uptake genes including the hitABC locus, which restored iron acquisition in the E. coli 1017 ent mutant. However, the disruption of this locus in the parental strain did not affect iron acquisition as drastically as the inactivation of AfeABCD, suggesting that the latter system could be more involved in iron transport than the HitABC system. The genome of this oral pathogen also harbors an active copy of the exbBexbDtonB operon, which could provide the energy needed for hemin acquisition. However, inactivation of each coding region of this operon did not affect the hemin and iron acquisition phenotypes of isogenic derivatives. This observation suggests that the function of these proteins could be replaced by those coded for by tolQ, tolR and tolA as it was described for other bacterial transport systems. Interruption of a hasR homolog, an actively transcribed gene that is predicted to code for an outer membrane hemophore receptor protein, did not affect the ability of an isogenic derivative to bind and use hemin under chelated conditions. This result also indicates that A. actinomycetemcomitans could produce more than one outer membrane hemin receptor as it was described in other human pathogens. All strains tested formed biofilms on plastic under iron-rich and iron-chelated conditions. However, smooth strains attached poorly and formed weaker biofilms when compared with rough isolates. The incubation of rough cells in the presence of FeCl3 or hemin resulted in an increased number of smaller aggregates and microcolonies as compared to the fewer but larger aggregates formed when cells were grown in the presence of dipyridyl.
Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Ferro/metabolismo , Boca/microbiologia , Aggregatibacter actinomycetemcomitans/genética , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes , Metabolismo Energético , Hemina/metabolismo , Humanos , ÓperonRESUMO
Actinobacillus actinomycetemcomitans, a pathogen associated with oral and extra-oral infections, requires iron to grow under limiting conditions. Although incapable of producing siderophores, this pathogen could acquire iron by direct interaction with compounds such as haemin, haemoglobin, lactoferrin and transferrin. In this work the ability of different A. actinomycetemcomitans strains to bind and use different iron sources was tested. None of the strains tested used haemoglobin, lactoferrin or transferrin as sole sources of iron. However, all of them used FeCl(3) and haemin as iron sources under chelated conditions. Dot-blot binding assays showed that all strains bind lactoferrin, haemoglobin and haemin, but not transferrin. Insertion inactivation of hmsF, which encodes a predicted cell-envelope protein related to haemin-storage proteins produced by other pathogens, reduced haemin and Congo red binding drastically without affecting haemin utilization as an iron source under chelated conditions. Biofilm assays showed that all strains tested attached to and formed biofilms on plastic under iron-rich and iron-chelated conditions. However, scanning electron microscopy showed that smooth strains formed simpler biofilms than rough isolates. Furthermore, the incubation of rough cells in the presence of FeCl(3) or haemin resulted in the formation of more aggregates and microcolonies compared with the fewer cell aggregates formed when cells were grown in the presence of the synthetic iron chelator dipyridyl. These cell responses to changes in extracellular iron concentrations may reflect those that this pathogen expresses under the conditions it encounters in the human oral cavity.
Assuntos
Aggregatibacter actinomycetemcomitans/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Ferro/metabolismo , 2,2'-Dipiridil/farmacologia , Aggregatibacter actinomycetemcomitans/genética , Aggregatibacter actinomycetemcomitans/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes/efeitos dos fármacos , Quelantes/farmacologia , Cloretos , Eletroforese em Gel de Poliacrilamida , Compostos Férricos/metabolismo , Compostos Férricos/farmacologia , Hemina/metabolismo , Hemina/farmacologia , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Humanos , Ferro/farmacologia , Compostos de Ferro/metabolismo , Compostos de Ferro/farmacologia , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Microscopia Eletrônica de Varredura , Mutação , Ligação Proteica , Especificidade da Espécie , Doenças Estomatognáticas/microbiologiaRESUMO
The Actinobacillus actinomycetemcomitans afeABCD iron transport system, the expression of which is controlled by iron and Fur, was identified in three different isolates. The protein products of this locus are related to bacterial ABC transporters involved in metal transport. Transformation of the Escherichia coli 1017 iron acquisition mutant with a plasmid harboring afeABCD promoted cell growth under iron-chelated conditions. However, insertion disruption of each of the afeABCD coding regions abolished this growth-relieving effect. The replacement of the parental afeA allele with the derivative afeA::EZ::TN
Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Aggregatibacter actinomycetemcomitans/metabolismo , Ferro/metabolismo , Sideróforos/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Bases , Clonagem Molecular , Dados de Sequência Molecular , Fenótipo , Regiões Promotoras GenéticasRESUMO
A genomic island was identified in the Haemophilus influenzae biogroup aegyptius Brazilian purpuric fever (BPF) strain F3031. This island, which was also found in other BPF isolates, could not be detected in non-BPF biogroup aegyptius strains or in nontypeable or typeable H. influenzae strains, with the exception of a region present in the type b Eagan strain. This 34,378-bp island is inserted, in reference to H. influenzae Rd KW20, within a choline transport gene and contains a mosaic structure of Mu-like prophage genes, several hypothetical genes, and genes potentially encoding an Erwinia carotovora carotovoricin Er-like bacteriocin. The product of the tail fiber ORF in the bacteriocin-like region shows a hybrid structure where the C terminus is similar to an H. influenzae phage HP1 tail protein implicating this open reading frame in altering host specificity for a putative bacteriocin. Significant synteny is seen in the entire genomic island with genomic regions from Salmonella enterica subsp. enterica serovar Typhi CT18, Photorhabdus luminescens subsp. laumondii TT01, Chromobacterium violaceum, and to a lesser extent Haemophilus ducreyi 35000HP. In a previous work, we isolated several BPF-specific DNA fragments through a genome subtraction procedure, and we have found that a majority of these fragments map to this locus. In addition, several subtracted fragments generated from an independent laboratory by using different but related strains also map to this island. These findings underscore the importance of this BPF-specific chromosomal region in explaining some of the genomic differences between highly invasive BPF strains and non-BPF isolates of biogroup aegyptius.