Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 996, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443878

RESUMO

Gladiolus, a widely cultivated cut flower known for its aesthetically pleasing multicoloured spikes, has earned significant commercial popularity. A comprehensive understanding of the rhizosphere bacterial community associated with gladiolus is imperative for revealing its potential benefits. Molecular characterization is considered an effective method to gain insights into the structural and functional aspects of microbial populations. The soil characteristics and bacterial communities in the rhizosphere are typically influenced by quorum sensing (QS) and quorum quenching (QQ) mechanisms. This study aims to explore the niceties and diversity of rhizospheric bacterial populations linked with gladiolus corms, with a specific focus on understanding the dynamics of QS and QQ mechanisms in their complex interactions. The isolation of bacterial strains was achieved through the serial dilution method on nutrient agar (NA) media. The identification of the isolates was accomplished by amplifying 16 S rRNA gene sequences via polymerase chain reaction (PCR) via the use of universal primers. Sequence analysis was conducted via BLAST on the National Center for Biotechnology Information (NCBI) database. The characteristics of the isolated bacteria were elucidated via biosensors. This study identified three QS strains and five QQ strains. A consortium of quenchers was formulated utilizing five strains that demonstrated efficacy in mitigating the impact of disease on gladiolus and fostering growth. Among the three treatments-Scale, Descale, and Descale and Cut Half (DSC)-the DSC treatment emerged as the most effective. This treatment exhibited a broader range of variation in biological parameters over time, aligning with prevailing trends in the local market.


Assuntos
Percepção de Quorum , Rizosfera , Microbiologia do Solo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Microbiota , RNA Ribossômico 16S/genética , Iridaceae/fisiologia , Iridaceae/genética
2.
Front Microbiol ; 15: 1441719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39228378

RESUMO

Arsenic (As) toxicity is a serious hazard to agricultural land due to growing industrialization, which has a negative effect on wheat crop yields. To address this issue, using seaweed extract and Azospirillum brasilense has emerged as an effective strategy for improving yield under stress conditions. However, the combined application of A. brasilense and seaweed extract in wheat crops under As toxicity has not been fully explored. The effectiveness of combining A. brasilense and seaweed extract in reducing As toxicity in wheat production was examined in this study through a 2-year pot experiment with nine treatments. These treatments included a control with no additives and two As concentrations (50 and 70 µM). At 50 and 70 µM, As was tested alone, with seaweed extract, with A. brasilense, and both. Significant results were achieved in reducing As toxicity in wheat crops. Arsenic at 70 µM proved more harmful than at 50 µM. The application of A. brasilense and seaweed extract was more effective in improving crop growth rates, chlorophyll levels, and stomatal conductance. The combined application notably decreased As concentration in wheat plants. It was concluded that applying A. brasilense and seaweed extract not only improves wheat growth but can also improve soil parameters under As toxicity conditions by increasing organic matter contents, boosting nutrient availability, and increasing the production of antioxidant enzymes.

3.
PeerJ ; 12: e17518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952990

RESUMO

Potato farming is a vital component of food security and the economic stability especially in the under developing countries but it faces many challenges in production, blackleg disease caused by Pectobacterium atrosepticum (Pa) is one of the main reason for damaging crop yield of the potato. Effective management strategies are essential to control these losses and to get sustainable potato crop yield. This study was focused on characterizing the Pa and the investigating new chemical options for its management. The research was involved a systematic survey across the three district of Punjab, Pakistan (Khanewal, Okara, and Multan) to collect samples exhibiting the black leg symptoms. These samples were analyzed in the laboratory where gram-negative bacteria were isolated and identified through biochemical and pathogenicity tests for Pa. DNA sequencing further confirmed these isolates of Pa strains. Six different chemicals were tested to control blackleg problem in both vitro and vivo at different concentrations. In vitro experiment, Cordate demonstrated the highest efficacy with a maximum inhibition zones of 17.139 mm, followed by Air One (13.778 mm), Profiler (10.167 mm), Blue Copper (7.7778 mm), Spot Fix (7.6689 mm), and Strider (7.0667 mm). In vivo, Cordate maintained its effectiveness with the lowest disease incidence of 14.76%, followed by Blue Copper (17.49%), Air One (16.98%), Spot Fix (20.67%), Profiler (21.45%), Strider (24.99%), and the control group (43.00%). The results highlight Cordate's potential as a most effective chemical against Pa, offering promising role for managing blackleg disease in potato and to improve overall productivity.


Assuntos
Pectobacterium , Doenças das Plantas , Solanum tuberosum , Solanum tuberosum/microbiologia , Pectobacterium/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Paquistão
4.
Sci Rep ; 14(1): 11705, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778064

RESUMO

A serious environmental problem that threatens soil quality, agricultural productivity, and food safety is heavy metal pollution in water sources. Heavy metal pollution is the main problem in tehsil Pasrur, Sialkot, Pakistan. Present study was arranged to notice the heavy metals in water, soil, forages and buffalo milk. There are seven sites that were used for this experiment. Highest malondialdehyde (MDA) contents (3.00 ± 0.01) were noticed in barseem roots at site 7. Ascorbate Peroxidase (APX) was reached at its peak (1.93 ± 0.01) at site 7 in the fresh barseem. Maximum protein contents (0.36 ± 0.01) were observed in fresh plant samples at site 2. Site 3's buffalo milk samples had the highest Ni content (7.22 ± 0.33 ppm), while Site 3's soil samples had the lowest Cr content (8.89 ± 0.56 ppm), Site 1's plant shoots had the lowest Cr content (27.75 ± 1.98 ppm), and Site 3's water had the highest Cr content (40.07 ± 0.49 ppm). The maximum fat content (5.38 ± 2.32%) was found in the milk of the animals at site 7. The highest density (31.88 ± 6.501%), protein content (3.64 ± 0.33%), lactose content (5.54 ± 0.320%), salt content (0.66 ± 0.1673%), and freezing point (- 0.5814 ± 0.1827 °C) were also observed in the milk from animals at site 7, whereas site 5 displayed the highest water content (0.66 ± 0.1673%) and peak pH value (11.64 ± 0.09). In selected samples, the pollution load index for Ni (which ranged from 0.01 to 1.03 mg/kg) was greater than 1. Site 7 has the highest conductivity value (5.48 ± 0.48). Values for the health risk index varied from 0.000151 to 1.00010 mg/kg, suggesting that eating tainted animal feed may pose health concerns. Significant health concerns arise from metal deposition in the food chain from soil to feed, with nickel having the highest health risk index.


Assuntos
Metais Pesados , Leite , Poluentes do Solo , Solo , Animais , Metais Pesados/análise , Poluentes do Solo/análise , Leite/química , Leite/metabolismo , Paquistão , Solo/química , Poluentes Químicos da Água/análise , Ração Animal/análise , Búfalos , Monitoramento Ambiental/métodos , Malondialdeído/metabolismo , Malondialdeído/análise
5.
BMC Plant Biol ; 24(1): 314, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654167

RESUMO

BACKGROUND: Water stress is a major danger to crop yield, hence new approaches to strengthen plant resilience must be developed. To lessen the negative effects of water stress on wheat plants, present study was arranged to investigate the role of synergistic effects of biochar, trans-zeatin riboside (t-ZR), and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. RESULTS: In a three-replication experiment comprising of four treatments (T0: Control, T1: Drought stress (DS), T2: DS + t-ZR with biochar, T3: DS + A. brasilense with biochar), we observed notable improvements in soil quality and enzymatic activities in water-stressed wheat plants with the application of t-ZR and A. brasilense with biochar. In drought stress, Treatment having the application of A. brasilense with biochar performs best as compared to the other and significant increased the enzymatic activities such as peroxidase (7.36%), catalase (8.53%), superoxide dismutase (6.01%), polyphenol oxidase (14.14%), and amylase (16.36%) in wheat plants. Different enzymatic activities showed different trends of results. Soil organic C, dissolved organic C, dissolved organic N also enhanced 29.46%, 8.59%, 22.70% respectively with the application of A. brasilense with biochar under drought stress condition. CONCLUSIONS: The synergistic action of A. brasilense and biochar creates an effective microbiological environment that supports essential plant physiological processes during drought stress. This enhancement is attributed to improved soil fertility and increased organic matter content, highlighting the potential of these novel strategies in mitigating water stress effects and enhancing crop resilience.


Assuntos
Azospirillum brasilense , Carvão Vegetal , Solo , Triticum , Triticum/metabolismo , Azospirillum brasilense/fisiologia , Solo/química , Desidratação , Secas
7.
Front Plant Sci ; 14: 1242836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780503

RESUMO

A cell wall determines the mechanical properties of a cell, serves as a barrier against plant stresses, and allows cell division and growth processes. The COBRA-Like (COBL) gene family encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein that controls cellulose deposition and cell progression in plants by contributing to the microfibril orientation of a cell wall. Despite being studied in different plant species, there is a dearth of the comprehensive global analysis of COBL genes in poplar. Poplar is employed as a model woody plant to study abiotic stresses and biomass production in tree research. Improved genome resequencing has enabled the comprehensive exploration of the evolution and functional capacities of PtrCOBLs (Poplar COBRA-Like genes) in poplar. Phylogeny analysis has discerned and classified PtrCOBLs into two groups resembling the Arabidopsis COBL family, and group I genes possess longer proteins but have fewer exons than group II. Analysis of gene structure and motifs revealed PtrCOBLs maintained a rather stable motif and exon-intron pattern across members of the same group. Synteny and collinearity analyses exhibited that the evolution of the COBL gene family was heavily influenced by gene duplication events. PtrCOBL genes have undergone both segmental duplication and tandem duplication, followed by purifying selection. Promotor analysis flaunted various phytohormone-, growth- and stress-related cis-elements (e.g., MYB, ABA, MeJA, SA, AuxR, and ATBP1). Likewise, 29 Ptr-miRNAs of 20 families were found targeting 11 PtrCOBL genes. PtrCOBLs were found localized at the plasma membrane and extracellular matrix, while gene ontology analysis showed their involvement in plant development, plant growth, stress response, cellulose biosynthesis, and cell wall biogenesis. RNA-seq datasets depicted the bulk of PtrCOBL genes expression being found in plant stem tissues and leaves, rendering mechanical strength and rejoinders to environmental cues. PtrCOBL2, 3, 10, and 11 manifested the highest expression in vasculature and abiotic stress, and resemblant expression trends were upheld by qRT-PCR. Co-expression network analysis identified PtrCOBL2 and PtrCOBL3 as hub genes across all abiotic stresses and wood developing tissues. The current study reports regulating roles of PtrCOBLs in xylem differentiating tissues, tension wood formation, and abiotic stress latency that lay the groundwork for future functional studies of the PtrCOBL genes in poplar breeding.

8.
Funct Integr Genomics ; 23(3): 212, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37368046

RESUMO

In recent years, significant progress has been made in understanding the biosynthetic pathway and regulation of flavonoids through forward genetic approaches. However, there remains a notable gap in knowledge regarding the functional characterization and underlying processes of the transport framework responsible for flavonoid transport. This aspect requires further investigation and clarification to achieve a comprehensive understanding. Presently, there are a total of four proposed transport models associated with flavonoids, namely glutathione S-transferase (GST), multidrug and toxic compound extrusion (MATE), multidrug resistance-associated protein (MRPs), and bilitranslocase-homolog (BTL). Extensive research has been conducted on the proteins and genes related to these transport models. However, despite these efforts, numerous challenges still exist, leaving much to be explored in the future. Gaining a deeper understanding of the mechanisms underlying these transport models holds immense potential for various fields such as metabolic engineering, biotechnological approaches, plant protection, and human health. Therefore, this review aims to provide a comprehensive overview of recent advancements in the understanding of flavonoid transport mechanisms. By doing so, we aim to paint a clear and coherent picture of the dynamic trafficking of flavonoids.


Assuntos
Flavonoides , Plantas , Humanos , Transporte Biológico , Plantas/genética , Glutationa Transferase/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
PeerJ ; 11: e14983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967996

RESUMO

Sustainable maize production under changing climatic conditions, especially heat and water stress conditions is one of the key challenges that need to be addressed immediately. The current field study was designed to evaluate the impact of water stress on morpho-physiological, biochemical, reactive oxygen species, antioxidant activity and kernel quality traits at different plant growth stages in maize hybrids. Four indigenous i.e., YH-5427, YH-5482, YH-5395, JPL-1908, and one multinational maize hybrid i.e., NK-8441 (Syngenta Seeds) were used for the study. Four stress treatments (i) Control (ii) 3-week water stress at pre-flowering stage (iii) 3-week water stress at anthesis stage (iv) 3-week water stress at grain filling/post-anthesis stage. The presence of significant oxidative stress was revealed by the overproduction of reactive oxygen species (ROXs) i.e., H2O2 (1.9 to 5.8 µmole g-1 FW) and malondialdehyde (120.5 to 169.0 nmole g-1 FW) leading to severe negative impacts on kernel yield. Moreover, a severe reduction in photosynthetic ability (50.6%, from 34.0 to 16.8 µmole m-2 s-1), lower transpirational rate (31.3%, from 3.2 to 2.2 mmol m-2 s-1), alterations in plant anatomy, reduced pigments stability, and deterioration of kernel quality was attributed to water stress. Water stress affected all the three studied growth stages, the pre-flowering stage being the most vulnerable while the post-anthesis stage was the least affected stage to drought stress. Antioxidant activity was observed to increase under all stress conditions in all maize hybrids, however, the highest antioxidant activity was recorded at the anthesis stage and in maize hybrids YH-5427 i.e., T-SOD activity was increased by 61.3% from 37.5 U mg-1 pro to 60.5 U mg-1 pro while CAT activity was maximum under water stress conditions 8.3 U mg-1 pro as compared to 10.3 U mg-1 pro under control (19.3%). The overall performance of maize hybrid YH-5427 was much more promising than other hybrids, attributed to its higher photosynthetic activity, and better antioxidant defense mechanism. Therefore, this hybrid could be recommended for cultivation in drought-prone areas.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Desidratação , Peróxido de Hidrogênio/metabolismo
10.
J Ethnopharmacol ; 306: 116151, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36638853

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bletilla striata (Thunb.) Reixchb.f. is a perennial herb of the Orchid-aceae Bletilla and have various ethnopharmacological uses. As a traditional astringent hemostatic Chinese herbal medicine, B. striata has been widely used in the treatment of 127 different kinds of hemorrhagic diseases. Moreover, B. striata has been a beauty medicine since ancient times, with the first ancient records dating back to 2000 years ago, traditionally used to removing freckle and smooth the skin. Because of the high content of polysaccharides, which is considered the primary active substance of B. striata and having anti-aging, whitening, and anti-oxidation functions, this is also widely used in the cosmetics industry. AIM: We screened the germplasm resources of B. striata in the early stage and the superior HL20 strain was obtained. Our research aims to analyze and compare the whitening and antimicrobial activities of different extracts (aqueous extract, ethanol extract, and aqueous extract from ethanol extract filter residue) of the selected superior varieties (HL20) and the control (WT). MATERIALS AND METHODS: L-tyrosine and L-dopa were used as substrates to establish a tyrosinase inhibition system with arbutin as the positive control and the whitening activity was measured by the inhibition rate of TYR-M and TYR-D. Besides, an in vitro antimicrobial susceptibility test was performed to assess the antimicrobial activity of the B. striata extracts. In a nutshell, the method of punching diffusion was used to thoroughly examine the effects of three extracts from two strains on the antimicrobial activity of five types of microorganism in cosmetics microbiological testing products. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of different extracts were also assessed. RESULTS: Results showed that the whitening and antimicrobial properties of the HL20 strain were found to be more potent than those of the WT strain. Compared with the other two extraction methods, the aqueous extract from ethanol extract filter residue of B. striata exhibited better inhibition of tyrosinase activity. The antimicrobial assay manifested that only the ethanol extract of B. striata had an inhibitory effect and had a potent antimicrobial impact on E. faecalis. CONCLUSIONS: In summary, we evaluated the pharmacological activity of the pre-selected excellent variety (HL20) in terms of whitening and antimicrobial activity. Our results reveal that the selected strain (HL20) has certain advantages over the control (WT). These characteristics make it a candidate additive for whitening cosmetics. Our study also provides a further contribution to the product application of B. striata in cosmetics and antimicrobial agents and the selected HL20 also lays a foundation for the breeding of superior B. striata varieties.


Assuntos
Medicamentos de Ervas Chinesas , Orchidaceae , Monofenol Mono-Oxigenase , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Pele , Etanol , Orchidaceae/química
11.
Plant Sci ; 327: 111566, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513314

RESUMO

Anoectochilus roxburghii is a rare and precious plant with medicinal and healthcare functions. Embryo abortion caused the lack of resources. Polyamine promoted its flowering and stress resistance in our previous study. But the mechanism remains unclear. The WRKY transcription factor family has been linked to a variety of biological processes in plants. In this study, two WRKY TFs (ArWRKY5 and ArWRKY20) of A. roxburghii, which showed significant response to Spd treatment, were identified and functionally analyzed. Tissue specific expression analyzation showed both of them mostly present in the flower. And ArWRKY5 expressed highest in the flower bud stage (-1 Flowering), while ArWRKY20 showed the highest expression in earlier flower bud stage (-2 Flowering) and the expression gradually decreased with flowering. The transcriptional activation activity assay and subcellular localization revealed that ArWRKY5 and ArWRKY20 were located in the nucleus and ArWRKY20 showed transcriptional activity. The heterologous expression of ArWRKY5 in Arabidopsis thaliana showed earlier flowering, while overexpression of ArWRKY20 delayed flowering. But the OE-ArWRKY20 lines had a robust body shape and a very significant increase in the number of rosette leaves. Furthermore, stamens and seed development were positively regulated by these two ArWRKYs. These results indicated that ArWRKY5 and ArWRKY20 not only play opposite roles in the floral development, but also regulate the plant growth and seed development in A. thaliana. But their specific biological functions and mechanism in A. roxburghii need to be investigated further.


Assuntos
Orchidaceae , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo
12.
Aging Dis ; 13(6): 1745-1758, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36465173

RESUMO

The amyloid cascade hypothesis has always been a research focus in the therapeutic field of Alzheimer's disease (AD) since it was put forward. Numerous researchers attempted to find drugs for AD treatment based on this hypothesis. To promote the research of anti-AD drugs development, the current hypothesis and pathogenesis were reviewed with expounding of ß-amyloid generation from its precursor protein and related transformations. Meanwhile, the present drug development strategies aimed at each stage in this hypothesis were also summarized. Several strategies especially immunotherapy showed the optimistic results in clinical trials, but only a small percentage of them eventually succeeded. In this review, we also tried to point out some common problems of drug development in preclinical and clinical studies which might be settled through multidisciplinary cooperation as well as the understanding that reinforces the amyloid cascade hypothesis.

13.
Front Plant Sci ; 13: 1019347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330239

RESUMO

Over the last two decades, the use of high-density SNP arrays and DNA sequencing have allowed scientists to uncover the majority of the genotypic space for various crops, including cotton. Genome-wide association study (GWAS) links the dots between a phenotype and its underlying genetics across the genomes of populations. It was first developed and applied in the field of human disease genetics. Many areas of crop research have incorporated GWAS in plants and considerable literature has been published in the recent decade. Here we will provide a comprehensive review of GWAS studies in cotton crop, which includes case studies on biotic resistance, abiotic tolerance, fiber yield and quality traits, current status, prospects, bottlenecks of GWAS and finally, thought-provoking question. This review will serve as a catalog of GWAS in cotton and suggest new frontiers of the cotton crop to be studied with this important tool.

14.
J Plant Physiol ; 279: 153835, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257086

RESUMO

Bud dormancy and its release are complex physiological phenomena in plants. The molecular mechanisms of bud dormancy in Liriodendron chinense are mainly unknown. Here, we studied bud dormancy and the related physiological and molecular phenomena in Liriodendron under long-day (LD) and short-day (SD). Bud burst was released faster under LD than under SD. Abscisic acid (ABA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) activities were increased significantly under LD in Liriodendron buds. In contrast, the contents of gibberellic acid (GA3), ascorbic acid (AsA), glutathione (GSH), malondialdehyde (MDA), and ascorbate peroxidase (APX) activity decreased under LD but increased under SD. Differentially expressed genes (DEGs) were up-regulated under LD and down-regulated under SD and these changes correspondingly promoted (LD) or repressed (SD) cell division and the number and/or size of cells in the bud. Transcriptomic analysis of Liriodendron buds under different photoperiods identified 187 DEGs enriched in several pathways such as flavonoid biosynthesis and phenylpropanoid biosynthesis, plant hormone and signal transduction, etc. that are associated with antioxidant enzymes, non-enzymatic antioxidants, and subsequently promote the growth of the buds. Our findings provide novel insights into regulating bud dormancy via flavonoid and phenylpropanoid biosynthesis, plant hormone and signal transduction pathways, and ABA content. These physiological and biochemical traits would help detect bud dormancy in plants.


Assuntos
Liriodendron , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fotoperíodo , Liriodendron/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Flavonoides , Dormência de Plantas/genética
15.
Genes (Basel) ; 13(8)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893042

RESUMO

Protein kinases play an essential role in plants' responses to environmental stress signals. SnRK2 (sucrose non-fermenting 1-related protein kinase 2) is a plant-specific protein kinase that plays a crucial role in abscisic acid and abiotic stress responses in some model plant species. In apple, corn, rice, pepper, grapevine, Arabidopsis thaliana, potato, and tomato, a genome-wide study of the SnRK2 protein family was performed earlier. The genome-wide comprehensive investigation was first revealed to categorize the SnRK2 genes in the Liriodendron chinense (L. chinense). The five SnRK2 genes found in the L. chinense genome were highlighted in this study. The structural gene variants, 3D structure, chromosomal distributions, motif analysis, phylogeny, subcellular localization, cis-regulatory elements, expression profiles in dormant buds, and photoperiod and chilling responses were all investigated in this research. The five SnRK2 genes from L. chinense were grouped into groups (I-IV) based on phylogeny analysis, with three being closely related to other species. Five hormones-, six stress-, two growths and biological process-, and two metabolic-related responsive elements were discovered by studying the cis-elements in the promoters. According to the expression analyses, all five genes were up- and down-regulated in response to abscisic acid (ABA), photoperiod, chilling, and chilling, as well as photoperiod treatments. Our findings gave insight into the SnRK2 family genes in L. chinense and opened up new study options.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Liriodendron , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla , Liriodendron/genética , Fotoperíodo , Proteínas de Plantas/metabolismo , Plantas/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética
16.
Front Plant Sci ; 13: 898823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646037

RESUMO

Maize is one of the most important field crops considering its utilization as food, feed, fodder, and biofuel. However, the sustainability of its production is under serious threat of heat and drought stresses, as these stresses could hamper crop growth, causing a significant loss to kernel yield. The research study was carried out at Maize and Millets Research Institute, Yusafwala-Sahiwal for two consecutive spring seasons (2019-20 and 2020-21) under a split-split plot design. The current study explained the individual and combined effects of drought and heat stresses on morphology, phenology, physiology, reactive oxygen species (stocktickerROS), antioxidant status, and kernel quality traits in four indigenous (YH-5482, YH-5427, YH-5404, and YH-1898) and one multinational maize hybrid (P-1543). Stress treatments, i.e., drought, heat, and drought+heat, were applied ten days before tasseling and lasted for 21 days. The results revealed the incidence of oxidative stress due to overproduction of Hydrogen peroxide; H2O2 (control: 1.9, heat+drought: 5.8), and Malondialdehyde; stocktickerMDA (control: 116.5, heat+drought: 193), leading to reduced photosynthetic ability (control: 31.8, heat:16.5), alterations in plant morphology, decrease in kernel yield (control: 10865 kg ha-1, heat+drought: 5564 kg ha-1), and quality-related traits. Although all the stress treatments induced the accumulation of stress-responsive osmolytes and enzymatic antioxidants to cope with the negative impact of osmotic stress, the effect of combined drought + heat stress was much higher. The overall performance of indigenous maize hybrid YH-5427 was much more promising than the other hybrids, attributed to its better tolerance of drought and heat stresses. Such stress tolerance was attributed to maintaining photosynthetic activity, a potent antioxidant and osmolyte-based defense mechanisms, and minimum reductions in yield-related traits, which assured the maximum kernel yield under all stress treatments.

17.
BMC Plant Biol ; 21(1): 413, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503442

RESUMO

BACKGROUND: In plants, basic leucine zipper transcription factors (TFs) play important roles in multiple biological processes such as anthesis, fruit growth & development and stress responses. However, systematic investigation and characterization of bZIP-TFs remain unclear in Chinese white pear. Chinese white pear is a fruit crop that has important nutritional and medicinal values. RESULTS: In this study, 62 bZIP genes were comprehensively identified from Chinese Pear, and 54 genes were distributed among 17 chromosomes. Frequent whole-genome duplication (WGD) and dispersed duplication (DSD) were the major driving forces underlying the bZIP gene family in Chinese white pear. bZIP-TFs are classified into 13 subfamilies according to the phylogenetic tree. Subsequently, purifying selection plays an important role in the evolution process of PbbZIPs. Synteny analysis of bZIP genes revealed that 196 orthologous gene pairs were identified between Pyrus bretschneideri, Fragaria vesca, Prunus mume, and Prunus persica. Moreover, cis-elements that respond to various stresses and hormones were found on the promoter regions of PbbZIP, which were induced by stimuli. Gene structure (intron/exon) and different compositions of motifs revealed that functional divergence among subfamilies. Expression pattern of PbbZIP genes differential expressed under hormonal treatment abscisic acid, salicylic acid, and methyl jasmonate  in pear fruits by real-time qRT-PCR. CONCLUSIONS: Collectively, a systematic analysis of gene structure, motif composition, subcellular localization, synteny analysis, and calculation of synonymous (Ks) and non-synonymous (Ka) was performed in Chinese white pear. Sixty-two bZIP-TFs in Chinese pear were identified, and their expression profiles were comprehensively analyzed under ABA, SA, and MeJa hormones, which respond to multiple abiotic stresses and fruit growth and development. PbbZIP gene occurred through Whole-genome duplication and dispersed duplication events. These results provide a basic framework for further elucidating the biological function characterizations under multiple developmental stages and abiotic stress responses.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Plantas/genética , Pyrus/genética , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromossomos de Plantas , Éxons , Fragaria/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Íntrons , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Pyrus/efeitos dos fármacos , Salicilatos/farmacologia , Ácido Salicílico/farmacologia , Sintenia
18.
Front Plant Sci ; 12: 665501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381472

RESUMO

Triticum aestivum xylanase inhibitor (TaXI) gene plays an important role in plant defense. Recently, TaXI-III inhibitor has been shown to play a dual role in wheat resistance to Fusarium graminearum infection. Thus, identifying the members of the TaXI gene family and clarifying its role in wheat resistance to stresses are essential for wheat resistance breeding. However, to date, no comprehensive research on TaXIs in wheat (Triticum aestivum L.) has been conducted. In this study, a total of 277 TaXI genes, including six genes that we cloned, were identified from the recently released wheat genome database (IWGSC RefSeq v1.1), which were unevenly located on 21 chromosomes of wheat. Phylogenetic analysis divided these genes into six subfamilies, all the six genes we cloned belonged to XI-2 subfamily. The exon/intron structure of most TaXI genes and the conserved motifs of proteins in the same subfamily are similar. The TaXI gene family contains 92 homologous gene pairs or clusters, 63 and 193 genes were identified as tandem replication and segmentally duplicated genes, respectively. Analysis of the cis-acting elements in the promoter of TaXI genes showed that they are involved in wheat growth, hormone-mediated signal transduction, and response to biotic and abiotic stresses. RNA-seq data analysis revealed that TaXI genes exhibited expression preference or specificity in different organs and developmental stages, as well as in diverse stress responses, which can be regulated or induced by a variety of plant hormones and stresses. In addition, the qRT-PCR data and heterologous expression analysis of six TaXI genes revealed that the genes of XI-2 subfamily have double inhibitory effect on GH11 xylanase of F. graminearum, suggesting their potential important roles in wheat resistance to F. graminearum infection. The outcomes of this study not only enhance our understanding of the TaXI gene family in wheat, but also help us to screen more candidate genes for further exploring resistance mechanism in wheat.

19.
Front Genet ; 12: 632155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868370

RESUMO

The AP2/ERF is a large protein family of transcription factors, playing an important role in signal transduction, plant growth, development, and response to various stresses. AP2/ERF super-family is identified and functionalized in a different plant but no comprehensive and systematic analysis in wheat (Triticum aestivum L.) has been reported. However, a genome-wide and functional analysis was performed and identified 322 TaAP2/ERF putative genes from the wheat genome. According to the phylogenetic and structural analysis, TaAP2/ERF genes were divided into 12 subfamilies (Ia, Ib, Ic, IIa, IIb, IIc, IIIa, IIIb, IIIc, IVa, IVb, and IVc). Furthermore, conserved motifs and introns/exons analysis revealed may lead to functional divergence within clades. Cis-Acting analysis indicated that many elements were involved in stress-related and plant development. Chromosomal location showed that 320 AP2/ERF genes were distributed among 21 chromosomes and 2 genes were present in a scaffold. Interspecies microsynteny analysis revealed that maximum orthologous between Arabidopsis, rice followed by wheat. Segment duplication events have contributed to the expansion of the AP2/ERF family and made this family larger than rice and Arabidopsis. Additionally, AP2/ERF genes were differentially expressed in wheat seedlings under the stress treatments of heat, salt, and drought, and expression profiles were verified by qRT-PCR. Remarkably, the RNA-seq data exposed that AP2/ERF gene family might play a vital role in stress-related. Taken together, our findings provided useful and helpful information to understand the molecular mechanism and evolution of the AP2/ERF gene family in wheat.

20.
Front Genet ; 12: 784878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211150

RESUMO

Superoxide dismutase (SOD) is an important enzyme that serves as the first line of defense in the plant antioxidant system and removes reactive oxygen species (ROS) under adverse conditions. The SOD protein family is widely distributed in the plant kingdom and plays a significant role in plant growth and development. However, the comprehensive analysis of the SOD gene family has not been conducted in Cucurbitaceae. Subsequently, 43 SOD genes were identified from Cucurbitaceae species [Citrullus lanatus (watermelon), Cucurbita pepo (zucchini), Cucumis sativus (cucumber), Lagenaria siceraria (bottle gourd), Cucumis melo (melon)]. According to evolutionary analysis, SOD genes were divided into eight subfamilies (I, II, III, IV, V, VI, VII, VIII). The gene structure analysis exhibited that the SOD gene family had comparatively preserved exon/intron assembly and motif as well. Phylogenetic and structural analysis revealed the functional divergence of Cucurbitaceae SOD gene family. Furthermore, microRNAs 6 miRNAs were predicted targeting 3 LsiSOD genes. Gene ontology annotation outcomes confirm the role of LsiSODs under different stress stimuli, cellular oxidant detoxification processes, metal ion binding activities, SOD activity, and different cellular components. Promoter regions of the SOD family revealed that most cis-elements were involved in plant development, stress response, and plant hormones. Evaluation of the gene expression showed that most SOD genes were expressed in different tissues (root, flower, fruit, stem, and leaf). Finally, the expression profiles of eight LsiSOD genes analyzed by qRT-PCR suggested that these genetic reserves responded to drought, saline, heat, and cold stress. These findings laid the foundation for further study of the role of the SOD gene family in Cucurbitaceae. Also, they provided the potential for its use in the genetic improvement of Cucurbitaceae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA