Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
JAMA Netw Open ; 7(2): e2355800, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38345816

RESUMO

Importance: Amyloid-related imaging abnormalities (ARIA) are brain magnetic resonance imaging (MRI) findings associated with the use of amyloid-ß-directed monoclonal antibody therapies in Alzheimer disease (AD). ARIA monitoring is important to inform treatment dosing decisions and might be improved through assistive software. Objective: To assess the clinical performance of an artificial intelligence (AI)-based software tool for assisting radiological interpretation of brain MRI scans in patients monitored for ARIA. Design, Setting, and Participants: This diagnostic study used a multiple-reader multiple-case design to evaluate the diagnostic performance of radiologists assisted by the software vs unassisted. The study enrolled 16 US Board of Radiology-certified radiologists to perform radiological reading with (assisted) and without the software (unassisted). The study encompassed 199 retrospective cases, where each case consisted of a predosing baseline and a postdosing follow-up MRI of patients from aducanumab clinical trials PRIME, EMERGE, and ENGAGE. Statistical analysis was performed from April to July 2023. Exposures: Use of icobrain aria, an AI-based assistive software for ARIA detection and quantification. Main Outcomes and Measures: Coprimary end points were the difference in diagnostic accuracy between assisted and unassisted detection of ARIA-E (edema and/or sulcal effusion) and ARIA-H (microhemorrhage and/or superficial siderosis) independently, assessed with the area under the receiver operating characteristic curve (AUC). Results: Among the 199 participants included in this study of radiological reading performance, mean (SD) age was 70.4 (7.2) years; 105 (52.8%) were female; 23 (11.6%) were Asian, 1 (0.5%) was Black, 157 (78.9%) were White, and 18 (9.0%) were other or unreported race and ethnicity. Among the 16 radiological readers included, 2 were specialized neuroradiologists (12.5%), 11 were male individuals (68.8%), 7 were individuals working in academic hospitals (43.8%), and they had a mean (SD) of 9.5 (5.1) years of experience. Radiologists assisted by the software were significantly superior in detecting ARIA than unassisted radiologists, with a mean assisted AUC of 0.87 (95% CI, 0.84-0.91) for ARIA-E detection (AUC improvement of 0.05 [95% CI, 0.02-0.08]; P = .001]) and 0.83 (95% CI, 0.78-0.87) for ARIA-H detection (AUC improvement of 0.04 [95% CI, 0.02-0.07]; P = .001). Sensitivity was significantly higher in assisted reading compared with unassisted reading (87% vs 71% for ARIA-E detection; 79% vs 69% for ARIA-H detection), while specificity remained above 80% for the detection of both ARIA types. Conclusions and Relevance: This diagnostic study found that radiological reading performance for ARIA detection and diagnosis was significantly better when using the AI-based assistive software. Hence, the software has the potential to be a clinically important tool to improve safety monitoring and management of patients with AD treated with amyloid-ß-directed monoclonal antibody therapies.


Assuntos
Doença de Alzheimer , Inteligência Artificial , Humanos , Masculino , Feminino , Idoso , Estudos Retrospectivos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Amiloide , Software , Anticorpos Monoclonais/uso terapêutico
2.
Alzheimers Res Ther ; 16(1): 19, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263073

RESUMO

BACKGROUND: Epileptic seizures are an established comorbidity of Alzheimer's disease (AD). Subclinical epileptiform activity (SEA) as detected by 24-h electroencephalography (EEG) or magneto-encephalography (MEG) has been reported in temporal regions of clinically diagnosed AD patients. Although epileptic activity in AD probably arises in the mesial temporal lobe, electrical activity within this region might not propagate to EEG scalp electrodes and could remain undetected by standard EEG. However, SEA might lead to faster cognitive decline in AD. AIMS: 1. To estimate the prevalence of SEA and interictal epileptic discharges (IEDs) in a well-defined cohort of participants belonging to the AD continuum, including preclinical AD subjects, as compared with cognitively healthy controls. 2. To evaluate whether long-term-EEG (LTM-EEG), high-density-EEG (hd-EEG) or MEG is superior to detect SEA in AD. 3. To characterise AD patients with SEA based on clinical, neuropsychological and neuroimaging parameters. METHODS: Subjects (n = 49) belonging to the AD continuum were diagnosed according to the 2011 NIA-AA research criteria, with a high likelihood of underlying AD pathophysiology. Healthy volunteers (n = 24) scored normal on neuropsychological testing and were amyloid negative. None of the participants experienced a seizure before. Subjects underwent LTM-EEG and/or 50-min MEG and/or 50-min hd-EEG to detect IEDs. RESULTS: We found an increased prevalence of SEA in AD subjects (31%) as compared to controls (8%) (p = 0.041; Fisher's exact test), with increasing prevalence over the disease course (50% in dementia, 27% in MCI and 25% in preclinical AD). Although MEG (25%) did not withhold a higher prevalence of SEA in AD as compared to LTM-EEG (19%) and hd-EEG (19%), MEG was significantly superior to detect spikes per 50 min (p = 0.002; Kruskall-Wallis test). AD patients with SEA scored worse on the RBANS visuospatial and attention subset (p = 0.009 and p = 0.05, respectively; Mann-Whitney U test) and had higher left frontal, (left) temporal and (left and right) entorhinal cortex volumes than those without. CONCLUSION: We confirmed that SEA is increased in the AD continuum as compared to controls, with increasing prevalence with AD disease stage. In AD patients, SEA is associated with more severe visuospatial and attention deficits and with increased left frontal, (left) temporal and entorhinal cortex volumes. TRIAL REGISTRATION: Clinicaltrials.gov, NCT04131491. 12/02/2020.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteínas Amiloidogênicas , Cognição , Progressão da Doença
3.
Mult Scler ; 29(6): 691-701, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36507671

RESUMO

BACKGROUND: We evaluated imaging features suggestive of neurodegeneration within the brainstem and upper cervical spinal cord (UCSC) in non-progressive multiple sclerosis (MS). METHODS: Standardized 3-Tesla three-dimensional brain magnetic resonance imaging (MRI) studies were prospectively acquired. Rates of change in volume, surface texture, curvature were quantified at the pons and medulla-UCSC. Whole and regional brain volumes and T2-weighted lesion volumes were also quantified. Independent regression models were constructed to evaluate differences between those of Black or African ancestry (B/AA) and European ancestry (EA) with non-progressive MS. RESULTS: 209 people with MS (pwMS) having at least two MRI studies, 29% possessing 3-6 timepoints, resulted in 487 scans for analysis. Median follow-up time between MRI timepoints was 1.33 (25th-75th percentile: 0.51-1.98) years. Of 183 non-progressive pwMS, 88 and 95 self-reported being B/AA and EA, respectively. Non-progressive pwMS demonstrated greater rates of decline in pontine volume (p < 0.0001) in B/AA and in medulla-UCSC volume (p < 0.0001) for EA pwMS. Longitudinal surface texture and curvature changes suggesting reduced tissue integrity were observed at the ventral medulla-UCSC (p < 0.001), dorsal pons (p < 0.0001) and dorsal medulla (p < 0.0001) but not the ventral pons (p = 0.92) between groups. CONCLUSIONS: Selectively vulnerable regions within the brainstem-UCSC may allow for more personalized approaches to disease surveillance and management.


Assuntos
Medula Cervical , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Medula Cervical/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Negro ou Afro-Americano , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Tronco Encefálico/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia
4.
Mult Scler Relat Disord ; 69: 104436, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36512956

RESUMO

BACKGROUND: Relatively little is known about how global and regional brain volumes changes in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) compare with Multiple Sclerosis (MS), Neuromyelitis optica spectrum disorder (NMOSD), and healthy controls (HC). OBJECTIVE: To compare global and regional brain volumes in MOGAD, MS, NMOSD, and HC cross-sectionally as well as longitudinally in a subset of patients. METHODS: We retrospectively reviewed all adult MOGAD and NMOSD patients with brain MRI performed in stable remission and compared them with MS patients and HC. Volumetric parameters were assessed using the FDA-approved icobrain software. adjusted for age and sex. RESULTS: Twenty-four MOGAD, 47 NMOSD, 40 MS patients, and 37 HC were included in the cross-sectional analyses. Relative to HC, the age-adjusted whole brain (WB) volume was significantly lower in patients with MOGAD (p=0.0002), NMOSD (p=0.042), and MS (p=0.01). Longitudinal analysis of a subset of 8 MOGAD, 22 NMOSD, and 34 MS patients showed a reduction in the WB and cortical gray matter (CGM) volumes over time in all three disease groups, without statistically significant differences between groups. The MOGAD group had a greater loss of thalamic volume compared to MS (p=0.028) and NMOSD (p=0.023) and a greater loss of hippocampal volumes compared to MS (p=0.007). CONCLUSIONS: Age-adjusted WB volume loss was evident in all neuroinflammatory conditions relative to HC in cross-sectional comparisons. In longitudinal analyses, MOGAD patients had a higher thalamic atrophy rate relative to MS and NMOSD, and a higher hippocampal atrophy rate relative to MS. Larger studies are needed to validate these findings and to investigate their clinical implications.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Humanos , Aquaporina 4 , Autoanticorpos , Encéfalo/diagnóstico por imagem , Estudos Transversais , Substância Cinzenta , Hipocampo , Esclerose Múltipla/diagnóstico por imagem , Neuromielite Óptica/diagnóstico por imagem , Estudos Retrospectivos
5.
Brain Sci ; 11(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34942872

RESUMO

AIM: To develop a microsimulation model to assess the potential health economic impact of software-assisted MRI in detecting disease activity or progression in relapsing-remitting multiple sclerosis (RRMS) patients. METHODS: We develop a simulated decision analytical model based on a hypothetical cohort of RRMS patients to compare a baseline decision-making strategy in which only clinical evolution (relapses and disability progression) factors are used for therapy decisions in MS follow-up, with decision-making strategies involving MRI. In this context, we include comparisons with a visual radiologic assessment of lesion evolution, software-assisted lesion detection, and software-assisted brain volume loss estimation. The model simulates clinical (EDSS transitions, number of relapses) and subclinical (new lesions and brain volume loss) disease progression and activity, modulated by the efficacy profiles of different disease-modifying therapies (DMTs). The simulated decision-making process includes the possibility to escalate from a low efficacy DMT to a high efficacy DMT or to switch between high efficacy DMTs when disease activity is detected. We also consider potential error factors that may occur during decision making, such as incomplete detection of new lesions, or inexact computation of brain volume loss. Finally, differences between strategies in terms of the time spent on treatment while having undetected disease progression/activity, the impact on the patient's quality of life, and costs associated with health status from a US perspective, are reported. RESULTS: The average time with undetected disease progression while on low efficacy treatment is shortened significantly when using MRI, from around 3 years based on clinical criteria alone, to 2 when adding visual examination of MRI, and down to only 1 year with assistive software. Hence, faster escalation to a high efficacy DMT can be performed when MRI software is added to the radiological reading, which has positive effects in terms of health outcomes. The incremental utility shows average gains of 0.23 to 0.37 QALYs over 10 and 15 years, respectively, when using software-assisted MRI compared to clinical parameters only. Due to long-term health benefits, the average annual costs associated with health status are lower by $1500-$2200 per patient when employing MRI and assistive software. CONCLUSIONS: The health economic burden of MS is high. Using assistive MRI software to detect and quantify lesions and/or brain atrophy has a significant impact on the detection of disease activity, treatment decisions, health outcomes, utilities, and costs in patients with MS.

6.
Brain Sci ; 11(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34573193

RESUMO

In multiple sclerosis (MS), the early detection of disease activity or progression is key to inform treatment changes and could be supported by digital tools. We present a novel CE-marked and FDA-cleared digital care management platform consisting of (1) a patient phone/web application and healthcare professional portal (icompanion) including validated symptom, disability, cognition, and fatigue patient-reported outcomes; and (2) clinical brain magnetic resonance imaging (MRI) quantifications (icobrain ms). We validate both tools using their ability to detect (sub)clinical disease activity (known-groups validity) and real-world data insights. Surveys showed that 95.6% of people with MS (PwMS) were interested in using an MS app, and 98.2% were interested in knowing about MRI changes. The icompanion measures of disability (p < 0.001) and symptoms (p = 0.005) and icobrain ms MRI parameters were sensitive to (sub)clinical differences between MS subtypes. icobrain ms also decreased intra- and inter-rater lesion count variability and increased sensitivity for detecting disease activity/progression from 24% to 76% compared to standard radiological reading. This evidence shows PwMS' interest, the digital care platform's potential to improve the detection of (sub)clinical disease activity and care management, and the feasibility of linking different digital tools into one overarching MS care pathway.

7.
J Alzheimers Dis ; 83(2): 623-639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34334402

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) has become important in the diagnostic work-up of neurodegenerative diseases. icobrain dm, a CE-labeled and FDA-cleared automated brain volumetry software, has shown potential in differentiating cognitively healthy controls (HC) from Alzheimer's disease (AD) dementia (ADD) patients in selected research cohorts. OBJECTIVE: This study examines the diagnostic value of icobrain dm for AD in routine clinical practice, including a comparison to the widely used FreeSurfer software, and investigates if combined brain volumes contribute to establish an AD diagnosis. METHODS: The study population included HC (n = 90), subjective cognitive decline (SCD, n = 93), mild cognitive impairment (MCI, n = 357), and ADD (n = 280) patients. Through automated volumetric analyses of global, cortical, and subcortical brain structures on clinical brain MRI T1w (n = 820) images from a retrospective, multi-center study (REMEMBER), icobrain dm's (v.4.4.0) ability to differentiate disease stages via ROC analysis was compared to FreeSurfer (v.6.0). Stepwise backward regression models were constructed to investigate if combined brain volumes can differentiate between AD stages. RESULTS: icobrain dm outperformed FreeSurfer in processing time (15-30 min versus 9-32 h), robustness (0 versus 67 failures), and diagnostic performance for whole brain, hippocampal volumes, and lateral ventricles between HC and ADD patients. Stepwise backward regression showed improved diagnostic accuracy for pairwise group differentiations, with highest performance obtained for distinguishing HC from ADD (AUC = 0.914; Specificity 83.0%; Sensitivity 86.3%). CONCLUSION: Automated volumetry has a diagnostic value for ADD diagnosis in routine clinical practice. Our findings indicate that combined brain volumes improve diagnostic accuracy, using real-world imaging data from a clinical setting.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento por Ressonância Magnética , Software , Idoso , Doença de Alzheimer/patologia , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Feminino , Hipocampo/patologia , Humanos , Masculino , Estudos Retrospectivos
8.
J Orthop Res ; 39(6): 1318-1330, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32270563

RESUMO

Diffusion tensor imaging (DTI) provides information about tissue microstructure and its degree of organization by quantifying water diffusion. We aimed to monitor longitudinal changes in DTI parameters (fractional isotropy, FA; mean diffusivity, MD; axial diffusivity, AD; radial diffusivity, RD) of the anterior cruciate ligament (ACL) following primary repair with internal bracing (IBLA). Fourteen patients undergoing IBLA were enrolled prospectively and scheduled for clinical follow-up, including instrumented laxity testing, and DTI at 3, 6, 12, and 24 months postoperatively. DTI was also performed in seven healthy subjects. Fiber tractography was used for 3D segmentation of the whole ACL volume, from which median DTI parameters were calculated. The posterior cruciate ligament (PCL) served as a control. Longitudinal DTI changes were assessed using a linear mixed model, and repeated measures correlations were calculated between DTI parameters and clinical laxity tests. At follow-up, thirteen patients had a stable knee and one patient sustained an ACL rerupture after 12 months postoperatively. The ACL repair showed a significant decrease of FA within the first 12 months after surgery, followed by stable FA values thereafter, while ACL diffusivities decreased over time returning towards normal values at 24 months postoperatively. For PCL there were no significant DTI changes over time. There was a significant correlation between ACL FA and laxity tests (r = -0.42, P = .017). This study has shown the potential of DTI to longitudinally monitor diffusion changes in the ACL following IBLA. The DTI findings suggest that healing of the ACL repair is incomplete at 24 months postoperatively.


Assuntos
Ligamento Cruzado Anterior/diagnóstico por imagem , Ligamento Cruzado Anterior/cirurgia , Imagem de Tensor de Difusão/métodos , Adulto , Feminino , Humanos , Estudos Longitudinais , Masculino
9.
Alzheimers Dement (Amst) ; 12(1): e12135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33313379

RESUMO

Recent data-sharing initiatives of clinical and preclinical Alzheimer's disease (AD) have led to a growing number of non-clinical researchers analyzing these datasets using modern data-driven computational methods. Cognitive tests are key components of such datasets, representing the principal clinical tool to establish phenotypes and monitor symptomatic progression. Despite the potential of computational analyses in complementing the clinical understanding of AD, the characteristics and multifactorial nature of cognitive tests are often unfamiliar to computational researchers and other non-specialist audiences. This perspective paper outlines core features, idiosyncrasies, and applications of cognitive test data. We report tests commonly featured in data-sharing initiatives, highlight key considerations in their selection and analysis, and provide suggestions to avoid risks of misinterpretation. Ultimately, the greater transparency of cognitive measures will maximize insights offered in AD, particularly regarding understanding the extent and basis of AD phenotypic heterogeneity.

10.
Mult Scler Relat Disord ; 46: 102543, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33296966

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) data from multiple sclerosis (MS) patients treated in real-world settings are important for understanding disease-modifying therapy effects, including no evidence of disease activity (NEDA) assessment. This longitudinal, retrospective, single-cohort analysis assessed MRI and clinical disease outcomes in patients with relapsing-remitting MS treated with natalizumab for up to 5 years in Prague, the Czech Republic. METHODS: The primary study endpoint was the proportion of patients free of new or enlarging fluid-attenuated inversion recovery (FLAIR) lesions after at least 2 years of natalizumab treatment. Secondary endpoints included percentage brain volume change over time, the number of new T1-hypointense lesions that persisted for ≥6 months, FLAIR and T1-hypointense lesion volume change over time, and the proportion of patients with NEDA-3 (defined as no relapses, no confirmed disability worsening, and no new or enlarging FLAIR lesions). RESULTS: A total of 193 patients were included in the study. During year 1 of natalizumab treatment, 78.9% of patients had no new or enlarging FLAIR lesions and 79.5% had no new T1 lesions. These proportions increased in years 2-5, with ≥98.0% of patients free of new or enlarging FLAIR lesions and ≥98.8% free of new T1 lesions. During year 1 on natalizumab, 52.2% of patients achieved NEDA-3; this proportion increased to ≥69.2% in years 2-5. CONCLUSION: This study provides additional evidence that long-term MS disease activity, as measured by both MRI activity and NEDA-3, is well-controlled in patients treated with natalizumab in real-world settings.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , República Tcheca , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Natalizumab/uso terapêutico , Estudos Retrospectivos , Resultado do Tratamento
11.
Front Neurosci ; 14: 396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435181

RESUMO

MRI diffusion data suffers from significant inter- and intra-site variability, which hinders multi-site and/or longitudinal diffusion studies. This variability may arise from a range of factors, such as hardware, reconstruction algorithms and acquisition settings. To allow a reliable comparison and joint analysis of diffusion data across sites and over time, there is a clear need for robust data harmonization methods. This review article provides a comprehensive overview of diffusion data harmonization concepts and methods, and their limitations. Overall, the methods for the harmonization of multi-site diffusion images can be categorized in two main groups: diffusion parametric map harmonization (DPMH) and diffusion weighted image harmonization (DWIH). Whereas DPMH harmonizes the diffusion parametric maps (e.g., FA, MD, and MK), DWIH harmonizes the diffusion-weighted images. Defining a gold standard harmonization technique for dMRI data is still an ongoing challenge. Nevertheless, in this paper we provide two classification tools, namely a feature table and a flowchart, which aim to guide the readers in selecting an appropriate harmonization method for their study.

12.
Neuroimage Clin ; 26: 102243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32193172

RESUMO

Brain volumes computed from magnetic resonance images have potential for assisting with the diagnosis of individual dementia patients, provided that they have low measurement error and high reliability. In this paper we describe and validate icobrain dm, an automatic tool that segments brain structures that are relevant for differential diagnosis of dementia, such as the hippocampi and cerebral lobes. Experiments were conducted in comparison to the widely used FreeSurfer software. The hippocampus segmentations were compared against manual segmentations, with significantly higher Dice coefficients obtained with icobrain dm (25-75th quantiles: 0.86-0.88) than with FreeSurfer (25-75th quantiles: 0.80-0.83). Other brain structures were also compared against manual delineations, with icobrain dm showing lower volumetric errors overall. Test-retest experiments show that the precision of all measurements is higher for icobrain dm than for FreeSurfer except for the parietal cortex volume. Finally, when comparing volumes obtained from Alzheimer's disease patients against age-matched healthy controls, all measures achieved high diagnostic performance levels when discriminating patients from cognitively healthy controls, with the temporal cortex volume measured by icobrain dm reaching the highest diagnostic performance level (area under the receiver operating characteristic curve = 0.99) in this dataset.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Software , Humanos
13.
Can J Neurol Sci ; 47(2): 189-196, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31787121

RESUMO

OBJECTIVE: In a previous pilot monocentric study, we investigated the relation between human leukocyte antigen (HLA) genotype and multiple sclerosis (MS) disease progression over 2 years. HLA-A*02 allele was correlated with better outcomes, whereas HLA-B*07 and HLA-B*44 were correlated with worse outcomes. The objective of this extension study was to further investigate the possible association of HLA genotype with disease status and progression in MS as measured by sensitive and complex clinical and imaging parameters. METHODS: Hundred and forty-six MS patients underwent HLA typing. Over a 4-year period of follow-up, we performed three clinical and magnetic resonance imaging (MRI) assessments per patient, which respectively included Expanded Disability Status Scale, Multiple Sclerosis Severity Scale, Timed-25-Foot-Walk, 9-Hole Peg Test, Symbol Digit Modalities Test, Brief Visual Memory Test, California Verbal Learning Test-II, and whole-brain atrophy, fluid-attenuated inversion recovery (FLAIR) lesion volume change and number of new FLAIR lesions using icobrain. We then compared the clinical and MRI outcomes between predefined HLA patient groups. RESULTS: Results of this larger study with a longer follow-up are in line with what we have previously shown. HLA-A*02 allele is associated with potentially better MS outcomes, whereas HLA-B*07, HLA-B*44, HLA-B*08, and HLA-DQB1*06 with a potential negative effect. Results for HLA-DRB1*15 are inconclusive. CONCLUSION: In the era of MS treatment abundance, HLA genotype might serve as an early biomarker for MS outcomes to inform individualized treatment decisions.


Assuntos
Cadeias beta de HLA-DQ/genética , Antígenos de Histocompatibilidade Classe I/genética , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Recidivante-Remitente/genética , Adolescente , Adulto , Idoso , Progressão da Doença , Feminino , Genótipo , Antígeno HLA-A2/genética , Antígeno HLA-B44/genética , Antígeno HLA-B7/genética , Antígeno HLA-B8/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/fisiopatologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Prognóstico , Adulto Jovem
14.
BMJ Open ; 9(9): e030309, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501122

RESUMO

INTRODUCTION: Based on the advances in the treatment of multiple sclerosis (MS), currently available disease-modifying treatments (DMT) have positively influenced the disease course of MS. However, the efficacy of DMT is highly variable and increasing treatment efficacy comes with a more severe risk profile. Hence, the unmet need for safer and more selective treatments remains. Specifically restoring immune tolerance towards myelin antigens may provide an attractive alternative. In this respect, antigen-specific tolerisation with autologous tolerogenic dendritic cells (tolDC) is a promising approach. METHODS AND ANALYSIS: Here, we will evaluate the clinical use of tolDC in a well-defined population of MS patients in two phase I clinical trials. In doing so, we aim to compare two ways of tolDC administration, namely intradermal and intranodal. The cells will be injected at consecutive intervals in three cohorts receiving incremental doses of tolDC, according to a best-of-five design. The primary objective is to assess the safety and feasibility of tolDC administration. For safety, the number of adverse events including MRI and clinical outcomes will be assessed. For feasibility, successful production of tolDC will be determined. Secondary endpoints include clinical and MRI outcome measures. The patients' immune profile will be assessed to find presumptive evidence for a tolerogenic effect in vivo. ETHICS AND DISSEMINATION: Ethics approval was obtained for the two phase I clinical trials. The results of the trials will be disseminated in a peer-reviewed journal, at scientific conferences and to patient associations. TRIAL REGISTRATION NUMBERS: NCT02618902 and NCT02903537; EudraCT numbers: 2015-002975-16 and 2015-003541-26.


Assuntos
Células Dendríticas/transplante , Tolerância Imunológica , Injeções Intradérmicas , Linfonodos , Esclerose Múltipla/terapia , Autoantígenos/imunologia , Ensaios Clínicos Fase I como Assunto , Células Dendríticas/imunologia , Humanos , Esclerose Múltipla/imunologia , Resultado do Tratamento
15.
Neuroimage Clin ; 22: 101771, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30927601

RESUMO

Disease-modifying treatment trials are increasingly advanced to the prodromal or preclinical phase of Alzheimer's disease (AD), and inclusion criteria are based on biomarkers rather than clinical symptoms. Therefore, it is of great interest to determine which biomarkers should be combined to accurately predict conversion from mild cognitive impairment (MCI) to AD dementia. However, up to date, only few studies performed a complete A/T/N subject characterization using each of the CSF and imaging markers, or they only investigated long-term (≥ 2 years) prognosis. This study aimed to investigate the association between cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), amyloid- and 18F-FDG positron emission tomography (PET) measures at baseline, in relation to cognitive changes and conversion to AD dementia over a short-term (12-month) period. We included 13 healthy controls, 49 MCI and 16 AD dementia patients with a clinical-based diagnosis and a complete A/T/N characterization at baseline. Global cortical amyloid-ß (Aß) burden was quantified using the 18F-AV45 standardized uptake value ratio (SUVR) with two different reference regions (cerebellar grey and subcortical white matter), whereas metabolism was assessed based on 18F-FDG SUVR. CSF measures included Aß1-42, Aß1-40, T-tau, P-tau181, and their ratios, and MRI markers included hippocampal volumes (HV), white matter hyperintensities, and cortical grey matter volumes. Cognitive functioning was measured by MMSE and RBANS index scores. All statistical analyses were corrected for age, sex, education, and APOE ε4 genotype. As a result, faster cognitive decline was most strongly associated with hypometabolism (posterior cingulate) and smaller hippocampal volume (e.g., Δstory recall: ß = +0.43 [p < 0.001] and + 0.37 [p = 0.005], resp.) at baseline. In addition, faster cognitive decline was significantly associated with higher baseline Aß burden only if SUVR was referenced to the subcortical white matter (e.g., Δstory recall: ß = -0.28 [p = 0.020]). Patients with MCI converted to AD dementia at an annual rate of 31%, which could be best predicted by combining neuropsychological testing (visuospatial construction skills) with either MRI-based HV or 18F-FDG-PET. Combining all three markers resulted in 96% specificity and 92% sensitivity. Neither amyloid-PET nor CSF biomarkers could discriminate short-term converters from non-converters.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Biomarcadores , Disfunção Cognitiva , Progressão da Doença , Hipocampo/patologia , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Compostos de Anilina , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Etilenoglicóis , Feminino , Fluordesoxiglucose F18 , Seguimentos , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/normas , Sensibilidade e Especificidade
16.
J Neurol ; 265(11): 2614-2624, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30187159

RESUMO

BACKGROUND/OBJECTIVES: Fluoxetine and prucalopride might change phosphocreatine (PCr) levels via the cAMP-PKA pathway, an interesting target in the neurodegenerative mechanisms of MS. METHODS: We conducted a two-center double-blind, placebo-controlled, randomized trial including 48 relapsing-remitting MS patients. Patients were randomized to receive placebo (n = 13), fluoxetine (n = 15), or prucalopride (n = 14) for 6 weeks. Proton (1H) and phosphorus (31P) magnetic resonance spectroscopy (MRS) as well as volumetric and perfusion MR imaging were performed at weeks 0, 2, and 6. Clinical and cognitive testing were evaluated at weeks 0 and 6. RESULTS: No significant changes were observed for both 31P and 1H MRS indices. We found a significant effect on white matter volume and a trend towards an increase in grey matter and whole brain volume in the fluoxetine group at week 2; however, these effects were not sustained at week 6 for white matter and whole brain volume. Fluoxetine and prucalopride showed a positive effect on 9-HPT, depression, and fatigue scores. CONCLUSION: Both fluoxetine and prucalopride had a symptomatic effect on upper limb function, fatigue, and depression, but this should be interpreted with caution. No effect of treatment was found on 31P and 1H MRS parameters, suggesting that these molecules do not influence the PCr metabolism.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fosfocreatina/metabolismo , Adulto , Benzofuranos/efeitos adversos , Benzofuranos/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Método Duplo-Cego , Feminino , Fluoxetina/efeitos adversos , Fluoxetina/uso terapêutico , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/psicologia , Fármacos Neuroprotetores/efeitos adversos , Tamanho do Órgão , Isótopos de Fósforo , Prótons , Resultado do Tratamento , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/patologia
17.
J Alzheimers Dis ; 63(4): 1509-1522, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29782314

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) acquisition/processing techniques assess brain volumes to explore neurodegeneration in Alzheimer's disease (AD). OBJECTIVE: We examined the clinical utility of MSmetrix and investigated if automated MRI volumes could discriminate between groups covering the AD continuum and could be used as a predictor for clinical progression. METHODS: The Belgian Dementia Council initiated a retrospective, multi-center study and analyzed whole brain (WB), grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), cortical GM (CGM) volumes, and WM hyperintensities (WMH) using MSmetrix in the AD continuum. Baseline (n = 887) and follow-up (FU, n = 95) T1-weighted brain MRIs and time-linked neuropsychological data were available. RESULTS: The cohort consisted of cognitively healthy controls (HC, n = 93), subjective cognitive decline (n = 102), mild cognitive impairment (MCI, n = 379), and AD dementia (n = 313). Baseline WB and GM volumes could accurately discriminate between clinical diagnostic groups and were significantly decreased with increasing cognitive impairment. MCI patients had a significantly larger change in WB, GM, and CGM volumes based on two MRIs (n = 95) compared to HC (FU>24months, p = 0.020). Linear regression models showed that baseline atrophy of WB, GM, CGM, and increased CSF volumes predicted cognitive impairment. CONCLUSION: WB and GM volumes extracted by MSmetrix could be used to define the clinical spectrum of AD accurately and along with CGM, they are able to predict cognitive impairment based on (decline in) MMSE scores. Therefore, MSmetrix can support clinicians in their diagnostic decisions, is able to detect clinical disease progression, and is of help to stratify populations for clinical trials.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Bélgica/epidemiologia , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Estatísticas não Paramétricas
18.
J Neurol Sci ; 375: 348-354, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28320165

RESUMO

OBJECTIVE: The identification of a biomarker with prognostic value is an unmet need in multiple sclerosis (MS). The objective of this study was to investigate a possible association of HLA genotype with disease status and progression in MS, based on comprehensive and sensitive clinical and magnetic resonance imaging (MRI) parameters to measure disease effects. METHOD: A total of 118 MS patients (79 females, 39 males) underwent HLA typing. Patient MS status was assessed at two time points in a 2-year interval, based on clinical scores (including EDSS, MSSS, T25FW, 9-HPT, SDMT, BVMT, CVLT-II) and MRI evaluations. Quantitative brain MRI values were obtained for whole brain atrophy, FLAIR lesion volume change and number of new lesions using MSmetrix. Predefined HLA patient groups were compared as of disease status and progression. Global assessment was achieved by an overall t-statistic and assessment per measurement by a Welch test and/or Mann Whitney U test. The effects of multiple covariates, including age, gender and disease duration as well as scan parameters, were also evaluated using a regression analysis. RESULTS: The HLA-A*02 allele was associated with better outcomes in terms of MSSS, EDSS and new lesion count (Welch test p-value<0.05). The HLA-B*07 and HLA-B*44 alleles showed a global negative effect on disease status, although none of the measurements reached significance (p-value<0.05). Results for the HLA-DRB1*15, HLA-DQB1*06 and HLA-B*08 alleles were inconclusive. The influence of the confounding variables on the statistical analysis was limited.


Assuntos
Predisposição Genética para Doença/genética , Antígenos HLA-B/genética , Esclerose Múltipla/genética , Adulto , Idoso , Avaliação da Deficiência , Progressão da Doença , Feminino , Frequência do Gene , Genótipo , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Projetos Piloto , Adulto Jovem
19.
Brain Behav ; 6(9): e00518, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27688944

RESUMO

INTRODUCTION: As neurodegeneration is recognized as a major contributor to disability in multiple sclerosis (MS), brain atrophy quantification could have a high added value in clinical practice to assess treatment efficacy and disease progression, provided that it has a sufficiently low measurement error to draw meaningful conclusions for an individual patient. METHOD: In this paper, we present an automated longitudinal method based on Jacobian integration for measuring whole-brain and gray matter atrophy based on anatomical magnetic resonance images (MRI), named MSmetrix. MSmetrix is specifically designed to measure atrophy in patients with MS, by including iterative lesion segmentation and lesion filling based on FLAIR and T1-weighted MRI scans. RESULTS: MS metrix is compared with SIENA with respect to test-retest error and consistency, resulting in an average test-retest error on an MS data set of 0.13% (MS metrix) and 0.17% (SIENA) and a consistency error of 0.07% (MS metrix) and 0.05% (SIENA). On a healthy subject data set including physiological variability the test-retest is 0.19% (MS metrix) and 0.31% (SIENA). CONCLUSION: Therefore, we can conclude that MSmetrix could be of added value in clinical practice for the follow-up of treatment and disease progression in MS patients.

20.
Front Neurosci ; 10: 576, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066162

RESUMO

Purpose: Lesion volume is a meaningful measure in multiple sclerosis (MS) prognosis. Manual lesion segmentation for computing volume in a single or multiple time points is time consuming and suffers from intra and inter-observer variability. Methods: In this paper, we present MSmetrix-long: a joint expectation-maximization (EM) framework for two time point white matter (WM) lesion segmentation. MSmetrix-long takes as input a 3D T1-weighted and a 3D FLAIR MR image and segments lesions in three steps: (1) cross-sectional lesion segmentation of the two time points; (2) creation of difference image, which is used to model the lesion evolution; (3) a joint EM lesion segmentation framework that uses output of step (1) and step (2) to provide the final lesion segmentation. The accuracy (Dice score) and reproducibility (absolute lesion volume difference) of MSmetrix-long is evaluated using two datasets. Results: On the first dataset, the median Dice score between MSmetrix-long and expert lesion segmentation was 0.63 and the Pearson correlation coefficient (PCC) was equal to 0.96. On the second dataset, the median absolute volume difference was 0.11 ml. Conclusions: MSmetrix-long is accurate and consistent in segmenting MS lesions. Also, MSmetrix-long compares favorably with the publicly available longitudinal MS lesion segmentation algorithm of Lesion Segmentation Toolbox.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA