Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mar Pollut Bull ; 203: 116440, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718548

RESUMO

The East Pacific (EP) region, especially the central and southern EP, has been fairly less studied than other world's regions with respect to marine litter pollution. This comprehensive literature review (257 peer-reviewed publications) showed that both macrolitter (mostly plastics) and microplastics tend to accumulate on EP shorelines. Moreover, they were also reported in all the other compartments investigated: sea surface, water column, seafloor and 'others'. Mostly local, land-based sources (e.g., tourism, poor waste management) were identified across the region, especially at continental sites from low and mid latitudes. Some sea-based sources (e.g., fisheries, long-distance drifting) were also identified at high latitudes and on oceanic islands, likely enhanced by the oceanographic dynamics of the EP that affect transport of floating litter. Our results suggest that effective solutions to the problem require local and preventive strategies to significantly reduce the levels of litter along the EP coasts.


Assuntos
Monitoramento Ambiental , Microplásticos , Plásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Oceano Pacífico
2.
Mar Pollut Bull ; 201: 116271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513604

RESUMO

The Eastern Tropical and South-Eastern Pacific region is of global biodiversity importance. At COP26, the governments of Costa Rica, Panama, Colombia, and Ecuador committed to the expansion of existing MPAs to create a new Mega MPA, safeguarding the Eastern Tropical Pacific Marine Corridor. It offers a profound step forward in conservation efforts but is not specifically designed to protect against the more diffuse anthropogenic threats, such as plastic pollution. We combine published data with our own unpublished records to assess the abundance and distribution of plastic pollution in the region. Macro- and microplastic concentrations varied markedly and were not significantly different when comparing areas inside and outside existing MPA boundaries. These findings highlight the diffuse and complex nature of plastic pollution and its ubiquitous presence across MPA boundaries. Understanding the sources and drivers of plastic pollution in the region is key to developing effective solutions.


Assuntos
Conservação dos Recursos Naturais , Plásticos , Biodiversidade , Poluição Ambiental , Microplásticos
3.
Sci Total Environ ; 913: 169633, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38157910

RESUMO

Tire and road wear particles (TRWP) are formed at the frictional interface between tires and the road surface. Tire tread and road pavement materials are denser than water but can be washed from the road surface into receiving water bodies, ultimately depositing into sediment, soil, or other media depending on the receiving environment. However, the paucity of mass-based measurements has limited the knowledge on the nature and extent of environmental concentrations necessary for environmental risk assessment of TRWP. Surface water and sediment samples were collected from the Seine River, France to characterize TRWP concentration. Sample locations were established upstream, within, and downstream of a major metropolitan area (Paris); downstream of smaller urban areas; adjacent to undeveloped land; and near the confluence of the estuary. Surface water and sediment were collected from the left and right banks at each of the eight locations, including two duplicates, for a total of 18 samples. Additionally, three sediment traps were deployed near the mouth of the river to quantify the flux of TRWP to sediment. Retained solids and sediment samples were analyzed using a modified pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) method that minimized the matrix interferences in the samples thus improving the current ISO Technical Specification ISO/TS 21396 : 2017 for TRWP mass concentration by Py-GC/MS. TRWP concentration was alternatively estimated by separating the sediment into the <1.9 g cm-3 fraction and analyzing for tread-derived zinc content. TRWP concentrations estimated by zinc method were significantly higher than results from the modified Py-GC/MS method. TRWP and total zinc concentrations show a decreasing trend from available historical data.

4.
Sci Total Environ ; 874: 162193, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36828069

RESUMO

Literature regarding microplastics in the atmosphere has advanced in recent years. However, studies have been undertaken in isolation with minimal collaboration and exploration of the relationships between air, deposition and dust. This review collates concentrations (particle count and mass-based), shape, size and polymetric characteristics for microplastics in ambient air (m3), deposition (m2/day), dust (microplastics/g) and snow (microplastics/L) from 124 peer-reviewed articles to provide a holistic overview and analysis of our current knowledge. In summary, ambient air featured concentrations between <1 to >1000 microplastics/m3 (outdoor) and <1 microplastic/m3 to 1583 ± 1181 (mean) microplastics/m3 (indoor), consisting of polyethylene terephthalate, polyethylene, polypropylene. No difference (p > 0.05) was observed between indoor and outdoor concentrations or the minimum size of microplastics (p > 0.5). Maximum microplastic sizes were larger indoors (p < 0.05). Deposition concentrations ranged between 0.5 and 1357 microplastics/m2/day (outdoor) and 475 to 19,600 microplastics/m2/day (indoor), including polyethylene, polystyrene, polypropylene, polyethylene terephthalate. Concentrations varied between indoor and outdoor deposition (p < 0.05), being more abundant indoors, potentially closer to sources/sinks. No difference was observed between the minimum or maximum reported microplastic sizes within indoor and outdoor deposition (p > 0.05). Road dust concentrations varied between 2 ± 2 and 477 microplastics/g (mean), consisting of polyvinyl chloride, polyethylene, polypropylene. Mean outdoor dust concentrations ranged from <1 microplastic/g (remote desert) to between 18 and 225 microplastics/g, comprised of polyethylene terephthalate, polyamide, polypropylene. Snow concentrations varied between 0.1 and 30,000 microplastics/L, containing polyethylene, polyamide, polypropylene. Concentrations within indoor dust varied between 10 and 67,000 microplastics/g, including polyethylene terephthalate, polyethylene, polypropylene. No difference was observed between indoor and outdoor concentrations (microplastics/g) or maximum size (p > 0.05). The minimum size of microplastics were smaller within outdoor dust (p > 0.05). Although comparability is hindered by differing sampling methods, analytical techniques, polymers investigated, spectral libraries and inconsistent terminology, this review provides a synopsis of knowledge to date regarding atmospheric microplastics.

5.
Environ Sci Technol ; 56(23): 16716-16725, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36383416

RESUMO

Nanoplastics (NPs; <1 µm) have greater availability to marine organisms than microplastics (1-5000 µm). Understanding NP uptake and depuration in marine organisms intended for human consumption is imperative for food safety, but until now it has been limited due to analytical constraints. Oysters (Crassostrea gigas) were exposed to polystyrene NPs doped with palladium (Pd), allowing the measurements of their uptake into tissues by inductively coupled plasma mass spectrometry (ICP-MS) combined with electron microscopy. Oysters were exposed for 6 days (d) to "Smooth" or "Raspberry" NPs, followed by 30 d of depuration with the aim of assessing the NP concentration in C. gigas following exposure, inferring the accumulation and elimination rates, and understanding the clearance of Pd NPs during the depuration period. After 6 d, the most significant accumulation was found in the digestive gland (106.6 and 135.3 µg g-1 dw, for Smooth and Raspberry NPs, respectively) and showed the most evident depuration (elimination rate constant KSmooth = 2 d-1 and KRaspberry = 0.2 d-1). Almost complete depuration of the Raspberry NPs occurred after 30 d. While a post-harvesting depuration period of 24-48 h for oysters could potentially reduce the NP content by 75%, more research to validate these findings, including depuration studies of oysters from the field, is required to inform practices to reduce human exposure through consumption.


Assuntos
Crassostrea , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Plásticos , Poliestirenos
6.
Sci Total Environ ; 811: 152382, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34923004

RESUMO

This study investigated the occurrence and contribution of plastic particles associated with size fractionated biosolids to the total concentration in biosolids (treated sewage sludge) samples collected from 20 wastewater treatment plants (WWTP) across Australia. This was achieved through sequential size fractionation of biosolids samples to quantify the mass concentration of 7 common plastics across a range of biosolids size fractions, including below 25 µm which has not been assessed in many previous studies. Quantitative analysis was performed by pressurized liquid extraction followed by pyrolysis coupled to gas chromatography - mass spectrometry. Of the total quantified plastics (Σ7plastics), the greatest proportion (27%) of the total mass were identified in the nominal <25 µm sized biosolids fraction. Polyethylene dominated the polymer mass in every size fraction, even though profiles varied between WWTPs. When comparing the sum of all sites for each sized biosolids fraction, the plurality of the polyethylene, polyvinyl-chloride, polystyrene, polypropylene, polycarbonate, and polyethylene-terephthalate concentrations were associated with the smallest size fraction (<25 µm). We confirm for the first time the presence of plastic particles in biosolids below a size fraction that is not captured by many methods. This is important, because of the potential greater significance of plastics in the low sizes to environmental and human health.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Biossólidos , Humanos , Plásticos , Pirólise , Esgotos , Poluentes Químicos da Água/análise
7.
Health Qual Life Outcomes ; 19(1): 245, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663356

RESUMO

BACKGROUND: The aim of the study was to assess health-related quality of life (HRQOL) in outpatients receiving anti-cancer treatment. METHODS: Observational, cross-sectional, single-center study that assessed HRQOL in cancer patients receiving antineoplastic treatment. RESULTS: A total of 184 patients were included in the study; the median total FACT-G score was 66 ± 12.9; the scores for the physical well-being, social/family well-being, emotional well-being and functional well-being domains were 17.8 + 4.8, 19.1 ± 4.4, 14.8 ± 3.8 and 14.3 ± 4.7 respectively. Patients with adverse events had poorer HRQOL compared to those without them (FACT-G score 62.2 vs. 67.3; p < 0.05). In the multivariate analysis the variables associated with poorer HRQOL in the form of a gradient were tumor stage and performance status (ECOG); female sex was also associated with poorer HRQOL. CONCLUSION: In our study, the neoplastic disease and anti-cancer treatment toxicities had an impact on HRQOL. Patients had poorer scores in the functional well-being domain and higher ones in the social/family well-being domain. Variables associated with worse HRQOL were tumor stage, performance status (ECOG) and female sex.


Assuntos
Neoplasias , Qualidade de Vida , Estudos Transversais , Feminino , Humanos , Saúde Mental , Neoplasias/tratamento farmacológico , Pacientes Ambulatoriais
8.
Sci Total Environ ; 796: 148835, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34280630

RESUMO

The influence of photo-oxidation on the quantification of isotactic polypropylene by Pyrolysis Gas Chromatography/Mass Spectrometry (Pyr-GC/MS) was assessed. Beads (oval shape, ~5 mm) and fragments (irregular shaped, 250-50 µm and 500-1000 µm) were subjected to relatively harsh simulated accelerated weathering conditions (using a filtered xenon-arc reproducing sunlight's full spectrum) for up to 37 and 80 days, respectively. Samples collected (n = 10 replicates for each treatment) at increasing number of weathering days were analysed by Fourier-transform infrared spectroscopy with Attenuated Total Reflection (FTIR-ATR), scanning electron microscopy, and differential scanning calorimetry in order to assess the extent and the rate of degradation. The rate of surface oxidation occurred faster for fragments compared to beads, probably due to their higher surface area. Quantification of the polypropylene trimer (2,4-dimethyl-1-heptene) via double shot Pyr-GC/MS, showed that the signal of the trimer relative to the mass of polypropylene was reduced through weathering with a degradation rate of 1:3 faster for fragments over beads. Signal reduction and carbonyl index were correlated to show that polypropylene with a carbonyl index of ≥13 has a significantly reduced 2,4-dimethyl-1-heptene signal when compared to virgin material. Consequently, the quantification of polypropylene subjected to weathering under harsh conditions may be underestimated by 42% (fragments, carbonyl index: 18) to 49% (beads, carbonyl index: 30) when quantified by Pyr-GC/MS and using virgin polypropylene calibration standards. Pyrolysis at a lower temperature (350 °C) identified six degradation specific markers (oxidation products) that increased in concentration with weathering. Further comparisons between virgin and weathered microplastics may need to be considered to avoid underestimation of microplastic concentrations in future studies.


Assuntos
Microplásticos , Plásticos , Cromatografia Gasosa-Espectrometria de Massas , Polipropilenos , Pirólise
9.
Water Res ; 201: 117367, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34182349

RESUMO

Plastics are ubiquitous contaminants that leak into the environment from multiple pathways including the use of treated sewage sludge (biosolids). Seven common plastics (polymers) were quantified in the solid fraction of archived biosolids samples from Australia and the United Kingdom from between 1950 and 2016. Six plastics were detected, with increasing concentrations observed over time for each plastic. Biosolids plastic concentrations correlated with plastic production estimates, implying a potential link between plastics production, consumption and leakage into the environment. Prior to the 1990s, the leakage of plastics into biosolids was limited except for polystyrene. Increased leakage was observed from the 1990s onwards; potentially driven by increased consumption of polyethylene, polyethylene terephthalate and polyvinyl chloride. We show that looking back in time along specific plastic pollution pathways may help unravel the potential sources of plastics leakage into the environment and provide quantitative evidence to support the development of source control interventions or regulations.


Assuntos
Plásticos , Esgotos , Austrália , Biossólidos , Reino Unido
10.
J Hazard Mater ; 416: 125811, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33892382

RESUMO

Microplastics (1 - 5000 µm) are pervasive in every compartment of our environment. However, little is understood regarding the concentration and size distribution of microplastics in road dust, and how they change in relation to human activity. Within road dust, microplastics move through the environment via atmospheric transportation and stormwater run-off into waterways. Human exposure pathways to road dust include dermal contact, inhalation and ingestion. In this study, road dust along an urban to rural transect within South-East Queensland, Australia was analysed using Accelerated Solvent Extraction followed by pyrolysis Gas Chromatography-Mass Spectrometry (Pyr-GC/MS). Polypropylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, poly (methyl methacrylate) and polyethylene were quantified. Microplastic concentrations ranged from ~0.5 mg/g (rural site) to 6 mg/g (Brisbane city), consisting primarily of polyvinyl chloride (29%) and polyethylene terephthalate (29%). Size fractionation (< 250 µm, 250-500 µm, 500-1000 µm, 1000-2000 µm and 2000-5000 µm) established that the < 250 µm size fraction contained the majority of microplastics by mass (mg/g). Microplastic concentrations in road dust demonstrated a significant relationship with the volume of vehicles (r2 = 0.63), suggesting traffic, as a proxy for human movement, is associated with increased microplastic concentrations in the built environment.


Assuntos
Poeira , Microplásticos , Austrália , Cidades , Poeira/análise , Monitoramento Ambiental , Humanos , Plásticos
11.
Environ Sci Process Impacts ; 23(2): 240-274, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33514987

RESUMO

Increased production and use of plastics has resulted in growth in the amount of plastic debris accumulating in the environment, potentially fragmenting into smaller pieces. Fragments <5 mm are typically defined as microplastics, while fragments <0.1 µm are defined as nanoplastics. Over the past decade, an increasing number of studies have reported the occurrence and potential hazards of plastic particles in the aquatic environment. However, less is understood about plastic particles in the terrestrial environment and specifically how much plastic accumulates in soils, the possible sources, potential ecological impacts, interaction of plastic particles with the soil environment, and appropriate extraction and analytical techniques for assessing the above. In this review, a comprehensive overview and a critical perspective on the current state of knowledge on plastic pollution in the soil environment is provided: detailing known sources, occurrence and distribution, analytical techniques used for identification and quantification and the ecological impacts of particles on soil. In addition, knowledge gaps are identified along with suggestions for future research.


Assuntos
Plásticos , Solo , Monitoramento Ambiental , Poluição Ambiental , Microplásticos
12.
Environ Sci Technol ; 54(23): 15132-15141, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200922

RESUMO

Plastics are contaminants of emerging concern that can enter the environment from multiple sources, including via land application of treated sewage sludge (biosolids). Biosolids samples collected from 82 wastewater treatment plants (WWTPs) across Australia and covering 34% of the population during census week in 2016 were quantitatively analyzed to estimate the release of seven common plastics. Quantitative analysis was performed by pressurized liquid extraction followed by double-shot microfurnace pyrolysis coupled to gas chromatography mass spectrometry. Ninety nine percent of the samples contained plastics (Σ6plastics) at concentrations of between 0.4 and 23.5 mg/g dry weight (median; 10.4 mg/g dry weight), while polycarbonate was not detected in any sample. Per-capita mass loads of plastics (Σ6plastics) released were between 8 and 877 g/person/year across all investigated WWTPs. Polyethylene was the predominant plastic detected, contributing to 69% of Σ6plastics. Based on the concentrations measured, it was projected that around 4700 metric tons (Mt) of plastics are released into the Australian environment through biosolids end-use each year, equating to approximately 200 g/person/year, which represents 0.13% of total plastics use in Australia. Of this, 3700 Mt of plastics are released to agricultural lands and 140 Mt to landscape topsoil. Our results provide a first quantitative per-capita mass loads and emission estimate of plastic types through biosolids end-use.


Assuntos
Plásticos , Poluentes Químicos da Água , Austrália , Biossólidos , Humanos , Esgotos , Poluentes Químicos da Água/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-32821263

RESUMO

BACKGROUND: Despite growing interest in cutaneous adverse events (CAEs) and their management in patients with cancer, they are often underreported and there are no extensive data on their impact on quality of life (QoL). Healthcare professionals should consider this issue in order to minimize its negative impact on QoL and improve patient outcomes. This study evaluates the impact of CAEs on QoL in outpatients receiving anticancer drugs and aims to determine the differences in QoL between conventional chemotherapy versus targeted therapies. METHODS: A total of 114 cancer patients with CAEs were included in this observational, cross-sectional study. Patient-reported outcomes instruments (Functional Assessment of Cancer Therapy - General, Dermatology Life Quality Index, and Skindex-16) were used. RESULTS: Mean scores in QoL indices were 65.3±13.4, 8.4±5, and 30.8±16.9 in Functional Assessment of Cancer Therapy - General, Dermatology Life Quality Index, and Skindex-16, respectively. The CAEs that had the greatest impact on dermatologic-related QoL were hand-foot skin reaction, rash, palmo-plantar erythrodysesthesia, and papulopustular eruption. No significant differences in QoL indices according to the type of treatment (conventional chemotherapy versus targeted therapy) were observed. CONCLUSIONS: CAEs, and particularly hand-foot toxicities, rashes, and papulopustular eruptions, can have an impact on QoL in outpatients receiving anticancer drugs as evaluated with three different patient-reported outcomes instruments. No differences in QoL related to CAEs were observed between conventional chemotherapy and targeted therapy.

16.
Sci Total Environ ; 747: 141175, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32781315

RESUMO

An emission source of microplastics into the environment is laundering synthetic textiles and clothing. Mechanical drying as a pathway for emitting microplastics, however, is poorly understood. In this study, emissions of microplastic fibres were sampled from a domestic vented dryer to assess whether mechanical drying of synthetic textiles releases microplastic fibres into the surrounding air or are captured by the inbuilt filtration system. A blue polyester fleece blanket was repeatedly washed and dried using the 'Normal Dry' program of a common domestic dryer operated at temperatures between 56 and 59 °C for 20 min. Microfibres in the ambient air and during operation of the dryer were sampled and analysed using microscopy for particle quantification and characterisation followed by Fourier-Transform Infrared Spectroscopy (FTIR) and Pyrolysis Gas Chromatography-Mass Spectrometry (Pyr-GC/MS) for chemical characterisation. Blue fibres averaged 6.4 ± 9.2 fibres in the room blank (0.17 ± 0.27 fibres/m3), 8.8 ± 8.5 fibres (0.05 ± 0.05 fibres/m3) in the procedural blank and 58 ± 60 (1.6 ± 1.8 fibres/m3) in the sample. This is the first study to measure airborne emissions of microplastic fibres from mechanical drying, confirming that it is an emission source of microplastic fibres into air - particularly indoor air.

17.
Environ Sci Technol ; 54(15): 9408-9417, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32644808

RESUMO

Microplastic contamination of the marine environment is widespread, but the extent to which the marine food web is contaminated is not yet known. The aims of this study were to go beyond visual identification techniques and develop and apply a simple seafood sample cleanup, extraction, and quantitative analysis method using pyrolysis gas chromatography mass spectrometry to improve the detection of plastic contamination. This method allows the identification and quantification of polystyrene, polyethylene, polyvinyl chloride, polypropylene, and poly(methyl methacrylate) in the edible portion of five different seafood organisms: oysters, prawns, squid, crabs, and sardines. Polyvinyl chloride was detected in all samples and polyethylene at the highest total concentration of between 0.04 and 2.4 mg g-1 of tissue. Sardines contained the highest total plastic mass concentration (0.3 mg g-1 tissue) and squid the lowest (0.04 mg g-1 tissue). Our findings show that the total concentration of plastics is highly variable among species and that microplastic concentration differs between organisms of the same species. The sources of microplastic exposure, such as packaging and handling with consequent transference and adherence to the tissues, are discussed. This method is a major development in the standardization of plastic quantification techniques used in seafood.


Assuntos
Plásticos , Poluentes Químicos da Água , Austrália , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Pirólise , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 715: 136924, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007891

RESUMO

The identification and quantification of selected plastics (polystyrene (PS), polycarbonate (PC), poly-(methyl methacrylate) (PMMA), polypropylene (PP), polyethylene terephthalate (PET), polyethylene (PE) and polyvinyl chloride (PVC)) in biosolids (treated sewage sludge) was performed by pressurized liquid extraction (PLE) combined with double-shot pyrolysis gas chromatography-mass spectrometry. Validation of the method yielded recoveries of between 85 and 128% (mean RSD 11%) at a linear range of between 0.01 and 2 µg. The distribution of plastics within 25 biosolid samples from a single wastewater treatment plant in Australia was assessed. The mass concentration of PE, PVC, PP, PS and PMMA was between 0.1 and 4.1 mg/g dry weight (dw) across all samples, with a total plastic concentration Æ©Plastics of between 2.8 and 6.6 mg/g dw (median = 4.1 mg/g dw). PE was the predominant plastic detected (mean concentration of 2.2 mg/g dw), contributing to 50% of the total of all plastics. Overall, this study demonstrates that pressurized liquid extraction (PLE) combined with double-shot pyrolysis gas chromatography-mass spectrometry can be used to identify and quantify PE, PP, PVC, PS, and PMMA in biosolids.


Assuntos
Plásticos/análise , Austrália , Biossólidos , Cromatografia Gasosa-Espectrometria de Massas , Pirólise , Esgotos
19.
Sci Total Environ ; 645: 1029-1039, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30248828

RESUMO

The effects of microplastics (MP) on aquatic organisms are currently the subject of intense research. Here, we provide a critical perspective on published studies of MP ingestion by aquatic biota. We summarize the available research on MP presence, behaviour and effects on aquatic organisms monitored in the field and on laboratory studies of the ecotoxicological consequences of MP ingestion. We consider MP polymer type, shape, size as well as group of organisms studied and type of effect reported. Specifically, we evaluate whether or not the available laboratory studies of MP are representative of the types of MPs found in the environment and whether or not they have reported on relevant groups or organisms. Analysis of the available data revealed that 1) despite their widespread detection in field-based studies, polypropylene, polyester and polyamide particles were under-represented in laboratory studies; 2) fibres and fragments (800-1600 µm) are the most common form of MPs reported in animals collected from the field; 3) to date, most studies have been conducted on fish; knowledge is needed about the effects of MPs on other groups of organisms, especially invertebrates. Furthermore, there are significant mismatches between the types of MP most commonly found in the environment or reported in field studies and those used in laboratory experiments. Finally, there is an overarching need to understand the mechanism of action and ecotoxicological effects of environmentally relevant concentrations of MPs on aquatic organism health.


Assuntos
Organismos Aquáticos/fisiologia , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Ecotoxicologia , Monitoramento Ambiental , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade
20.
Mar Pollut Bull ; 122(1-2): 379-391, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28684108

RESUMO

One of the most common plastics in the marine environment is polystyrene (PS) that can be broken down to micro sized particles. Marine organisms are vulnerable to the exposure to microplastics. This study assesses the effects of PS microplastics in tissues of the clam Scrobicularia plana. Clams were exposed to 1mgL-1 (20µm) for 14days, followed by 7days of depuration. A qualitative analysis by infrared spectroscopy in diffuse reflectance mode period detected the presence of microplastics in clam tissues upon exposure, which were not eliminated after depuration. The effects of microplastics were assessed by a battery of biomarkers and results revealed that microplastics induce effects on antioxidant capacity, DNA damage, neurotoxicity and oxidative damage. S. plana is a significant target to assess the environmental risk of PS microplastics.


Assuntos
Bivalves , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos , Dano ao DNA , Estresse Oxidativo , Poliestirenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA