Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 8(6): 930-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26112323

RESUMO

A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil-plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials.


Assuntos
Aspergillus niger/metabolismo , Fertilizantes , Fosfatos/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Celulose/metabolismo , Meios de Cultura/química , Fermentação , Phaseolus/crescimento & desenvolvimento , Saccharum/metabolismo , Temperatura
2.
Appl Environ Microbiol ; 80(10): 3081-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610849

RESUMO

During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.


Assuntos
Aspergillus niger/metabolismo , Carvão Vegetal/química , Ácido Cítrico/metabolismo , Fluoretos/toxicidade , Sedimentos Geológicos/química , Gluconatos/metabolismo , Ácido Oxálico/metabolismo , Fósforo/metabolismo , Adsorção , Fluoretos/química , Fósforo/química , Solo/química , Microbiologia do Solo , Solubilidade
3.
Appl Biochem Biotechnol ; 172(3): 1332-46, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24170331

RESUMO

Enzymatic hydrolysis is an important but expensive step in the production of ethanol from biomass. Thus, the production of efficient enzymatic cocktails is of great interest for this biotechnological application. The production of endoglucanase and xylanase activites from F. verticillioides were optimized in a factorial design (2(5)) followed by a CCDR design. Endoglucanase and xylanase activities increased from 2.8 to 8.0 U/mL and from 13.4 to 114 U/mL, respectively. The optimal pH and temperature were determined for endoglucanase (5.6, 80 °C), cellobiase (5.6, 60 °C), FPase (6.0, 55 °C) and xylanase (7.0, 50 °C). The optimized crude extract was applied in saccharification and fermentation of sugarcane bagasse from which 9.7 g/L of ethanol was produced at an ethanol/biomass yield of 0.19.


Assuntos
Celulase/química , Endo-1,4-beta-Xilanases/química , Fusarium/enzimologia , Biomassa , Celulose/química , Etanol/química , Fermentação , Hidrólise , Saccharum/química
4.
Appl Environ Microbiol ; 79(16): 4906-13, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23770895

RESUMO

The simultaneous release of various chemical elements with inhibitory potential for phosphate solubilization from rock phosphate (RP) was studied in this work. Al, B, Ba, Ca, F, Fe, Mn, Mo, Na, Ni, Pb, Rb, Si, Sr, V, Zn, and Zr were released concomitantly with P during the solubilization of Araxá RP (Brazil), but only F showed inhibitory effects on the process at the concentrations detected in the growth medium. Besides P solubilization, fluoride decreased fungal growth, citric acid production, and medium acidification by Aspergillus niger. At the maximum concentration found during Araxá RP solubilization (22.9 mg F(-) per liter), fluoride decreased P solubilization by 55%. These findings show that fluoride negatively affects RP solubilization by A. niger through its inhibitory action on the fungal metabolism. Given that fluoride is a common component of RPs, the data presented here suggest that most of the microbial RP solubilization systems studied so far were probably operated under suboptimal conditions.


Assuntos
Aspergillus niger/metabolismo , Fosfatos/metabolismo , Brasil , Fluoretos/metabolismo , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Microbiologia do Solo , Solubilidade , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA