Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
mBio ; 15(3): e0325223, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289074

RESUMO

Pericytes are located around blood vessels, in close contact with endothelial cells. We discovered that pericytes dampen pro-inflammatory endothelial cell responses. Endothelial cells co-cultured with pericytes had markedly reduced expression of adhesion molecules (PECAM-1 and ICAM-1) and proinflammatory cytokines (CCL-2 and IL-6) in response to bacterial stimuli (Brucella ovis, Listeria monocytogenes, or Escherichia coli lipopolysaccharide). Pericyte-depleted mice intraperitoneally inoculated with either B. ovis, a stealthy pathogen that does not trigger detectable inflammation, or Listeria monocytogenes, developed peritonitis. Further, during Citrobacter rodentium infection, pericyte-depleted mice developed severe intestinal inflammation, which was not evident in control mice. The anti-inflammatory effect of pericytes required connexin 43, as either chemical inhibition or silencing of connexin 43 abrogated pericyte-mediated suppression of endothelial inflammatory responses. Our results define a mechanism by which pericytes modulate inflammation during infection, which shifts our understanding of pericyte biology: from a structural cell to a pro-active player in modulating inflammation. IMPORTANCE: A previously unknown mechanism by which pericytes modulate inflammation was discovered. The absence of pericytes or blocking interaction between pericytes and endothelium through connexin 43 results in stronger inflammation, which shifts our understanding of pericyte biology, from a structural cell to a player in controlling inflammation.


Assuntos
Infecções Bacterianas , Pericitos , Animais , Camundongos , Ovinos , Pericitos/metabolismo , Células Endoteliais , Conexina 43/metabolismo , Conexina 43/farmacologia , Inflamação , Infecções Bacterianas/metabolismo
2.
Int J Antimicrob Agents ; 62(1): 106807, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37030471

RESUMO

Cryptococcus gattii and Cryptococcus neoformans are the main etiological agents of cryptococcosis, an invasive mycosis treated with amphotericin B, 5-fluorocytosine, and fluconazole. This limited arsenal is toxic and is associated with antifungal resistance. Cryptococcosis and malaria pathogens are eukaryotic organisms that have a high incidence in Sub-Saharan Africa. The antimalarials (ATMs) halofantrine (HAL) and amodiaquine (AQ) block Plasmodium heme polymerase, and artesunate (ART) induces oxidative stress. Considering that Cryptococcus spp. is susceptible to reactive oxygen species and that iron is essential for metabolism, the repurposing of ATMs for treating cryptococcosis was tested. ATMs reduced fungal growth, induced oxidative and nitrosative stresses, and altered ergosterol content, melanin production, and polysaccharide capsule size in C. neoformans and C. gattii, revealing a dynamic effect on fungal physiology. A comprehensive chemical-genetic analysis using two mutant libraries demonstrated that the deletion of genes involved in synthesizing components of the plasma membrane and cell wall, and oxidative stress responses are essential for fungal susceptibility to ATMs. Interestingly, the amphotericin B (AMB) fungicidal concentrations were ∼10 times lower when combined with ATMs, demonstrating a synergistic interaction. Further, the combinations showed reduced toxicity to murine macrophages. Finally, HAL+AMB and AQ+AMB efficiently reduced lethality and fungal burden in the lungs and brain in murine cryptococcosis. These findings provide perspectives for further studies with ATMs against cryptococcosis and other fungal infections.


Assuntos
Antimaláricos , Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Animais , Camundongos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antifúngicos/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/metabolismo , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Testes de Sensibilidade Microbiana
3.
Front Cell Infect Microbiol ; 12: 811474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548467

RESUMO

Cryptococcosis is an invasive mycosis caused by Cryptococcus spp. that affects the lungs and the central nervous system (CNS). Due to the severity of the disease, it may occur concomitantly with other pathogens, as a coinfection. Pseudomonas aeruginosa (Pa), an opportunistic pathogen, can also cause pneumonia. In this work, we studied the interaction of C. gattii (Cg) and Pa, both in vitro and in vivo. Pa reduced growth of Cg by the secretion of inhibitory molecules in vitro. Macrophages previously stimulated with Pa presented increased fungicidal activity. In vivo, previous Pa infection reduced morbidity and delayed the lethality due to cryptococcosis. This phenotype was correlated with the decreased fungal burden in the lungs and brain, showing a delay of Cg translocation to the CNS. Also, there was increased production of IL-1ß, CXCL-1, and IL-10, together with the influx of iNOS-positive macrophages and neutrophils to the lungs. Altogether, Pa turned the lung into a hostile environment to the growth of a secondary pathogen, making it difficult for the fungus to translocate to the CNS. Further, iNOS inhibition reverted the Pa protective phenotype, suggesting its important role in the coinfection. Altogether, the primary Pa infection leads to balanced pro-inflammatory and anti-inflammatory responses during Cg infection. This response provided better control of cryptococcosis and was decisive for the mild evolution of the disease and prolonged survival of coinfected mice in a mechanism dependent on iNOS.


Assuntos
Coinfecção , Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Infecções por Pseudomonas , Animais , Criptococose/microbiologia , Camundongos , Fagocitose
4.
Int J Biol Macromol ; 176: 567-577, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581203

RESUMO

Listeria monocytogenes is a cause of infectious food-borne disease in humans, characterized by neurological manifestations, abortion, and neonatal septicemia. It is intracellular bacterium, which limits the development of protective inactivated vacines. Adjuvants capable of stimulating cellular immune response are important tools for developing novel vaccines against intracellular bacteria. The aim of this study was to evaluate the vaccine potential of L. monocytogenes inactivated by gamma irradiation (KLM-γ) encapsulated in alginate microcapsules associated or not with chitosan against listeriosis in the murine model. At the fourth day after challenge there was a reduction in bacterial recovery in mice vaccinated with KLM-γ encapsulated with alginate or alginate-chitosan, with lower bacterial loads in the spleen (10 fold) and liver (100 fold) when compared to non-vaccinated mice. In vitro stimulation of splenocytes from mice vaccinated with alginate-chitosan-encapsulated KLM-γ resulted in lymphocyte proliferation, increase of proportion of memory CD4+ and CD8+ T cell and production of IL-10 and IFN-γ. Interestingly, the group vaccinated with alginate-chitosan-encapsulated KLM-γ had increased survival to lethal infection with lower L. monocytogenes-induced hepatic inflammation and necrosis. Therefore, KLM-γ encapsulation with alginate-chitosan proved to have potential for development of novel and safe inactivated vaccine formulations against listeriosis.


Assuntos
Alginatos , Vacinas Bacterianas , Quitosana , Raios gama , Listeria monocytogenes , Listeriose , Alginatos/química , Alginatos/farmacologia , Animais , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/farmacologia , Quitosana/química , Quitosana/farmacologia , Modelos Animais de Doenças , Feminino , Listeria monocytogenes/química , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de Produtos Inativados/química , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/farmacologia
5.
Pesqui. vet. bras ; 40(2): 88-96, Feb. 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1098441

RESUMO

Brucella ovis causes economic and reproductive losses in sheep herds. The goal of this study was to characterize infection with B. ovis field isolates in a murine model, and to evaluate protection induced by the candidate vaccine strain B. ovis ΔabcBA in mice challenged with these field isolates. B. ovis field strains were able to colonize and cause lesions in the liver and spleen of infected mice. After an initial screening, two strains were selected for further characterization (B. ovis 94 AV and B. ovis 266 L). Both strains had in vitro growth kinetics that was similar to that of the reference strain B. ovis ATCC 25840. Vaccination with B. ovis ΔabcBA encapsulated with 1% alginate was protective against the challenge with field strains, with the following protection indexes: 0.751, 1.736, and 2.746, for mice challenged with B. ovis ATCC25840, B. ovis 94 AV, and B. ovis 266 L, respectively. In conclusion, these results demonstrated that B. ovis field strains were capable of infecting and inducing lesions in experimentally infected mice. The attenuated vaccine strain B. ovis ΔabcBA induced protection in mice challenged with different B. ovis field isolates, resulting in higher protection indexes against more pathogenic strains.(AU)


Brucella ovis é responsável por perdas econômicas e reprodutivas em rebanhos ovinos. O objetivo deste trabalho foi caracterizar a infecção com as cepas isoladas de campo de B. ovis em modelo murino e avaliar a eficiência vacinal da mutante B. ovis ΔabcAB para proteção contra desafio com as cepas isoladas de campo. Foram utilizadas sete cepas isoladas de campo foram capazes de colonizar e provocar lesões no fígado e no baço de camundongos após sete dias pós-infecção. Após triagem, duas cepas foram selecionadas para a melhor caracterização (B. ovis 94 AV and B. ovis 266L). Ambas apresentaram crescimento em placa de cultivo semelhante ao da cepa de referência B. ovis ATCC 25840. A vacinação com a cepa de Brucella ovis ΔabcBA encapsulada com alginato a 1% foi capaz de proteger camundongos desafiados com as cepas isoladas de campo, com os seguintes índices de proteção: 0,751, 1,736 e 2,746, para camundongos desafiados com B. ovis ATCC 25840, B. ovis 94 AV e B. ovis 266 L, respectivamente. Estes resultados demonstraram que as cepas isoladas de campo de B. ovis são capazes de infectar e induzir lesão em camundongos experimentalmente infectados. O uso da cepa mutante atenuada B. ovis ΔabcBA para vacinação de fêmeas C57BL/6 desafiados com diferentes cepas de B. ovis induziu proteção nos camundongos desafiados com diferentes cepas de B. ovis. Deste modo, mostrando-se eficiente na proteção das cepas de campo de B. ovis.(AU)


Assuntos
Animais , Camundongos , Brucelose/prevenção & controle , Ovinos/microbiologia , Vacinas Bacterianas/imunologia , Brucella ovis/isolamento & purificação , Brucella ovis/imunologia , Brucella ovis/patogenicidade
6.
Future Med Chem ; 11(12): 1417-1425, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31298580

RESUMO

Aim: The orphan drug auranofin was recently found to exhibit antimicrobial properties. Materials & methods: We explored the efficacy of auranofin by evaluating the minimal inhibitory concentration against a collection of over 500 clinical isolates derived from multiple institutions, inclusive of drug resistant strains. Our evaluation also included continuous exposure of bacteria to auranofin. Results & conclusion: We found that minimal inhibitory concentrations ranged between 0.125 and 1 mg/l, exerting robust antimicrobial activity against a sizeable clinical collection of the bacteria. Further, we evaluated the propensity of the methicillin-resistant Staphylococcus aureus strain MW2 to develop resistance through extended exposure to auranofin. After 25 days, the bacteria remained susceptible. Our data suggest that resistance mechanisms do not currently exist to block auranofin antimicrobial activity.


Assuntos
Antibacterianos/farmacologia , Auranofina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Staphylococcus aureus/isolamento & purificação
7.
Artigo em Inglês | MEDLINE | ID: mdl-29018774

RESUMO

Influenza A virus (IAV) infects millions of people annually and predisposes to secondary bacterial infections. Inhalation of fungi within the Cryptococcus complex causes pulmonary disease with secondary meningo-encephalitis. Underlying pulmonary disease is a strong risk factor for development of C. gattii cryptococcosis though the effect of concurrent infection with IAV has not been studied. We developed an in vivo model of Influenza A H1N1 and C. gattii co-infection. Co-infection resulted in a major increase in morbidity and mortality, with severe lung damage and a high brain fungal burden when mice were infected in the acute phase of influenza multiplication. Furthermore, IAV alters the host response to C. gattii, leading to recruitment of significantly more neutrophils and macrophages into the lungs. Moreover, IAV induced the production of type 1 interferons (IFN-α4/ß) and the levels of IFN-γ were significantly reduced, which can be associated with impairment of the immune response to Cryptococcus during co-infection. Phagocytosis, killing of cryptococci and production of reactive oxygen species (ROS) by IAV-infected macrophages were reduced, independent of previous IFN-γ stimulation, leading to increased proliferation of the fungus within macrophages. In conclusion, IAV infection is a predisposing factor for severe disease and adverse outcomes in mice co-infected with C. gattii.


Assuntos
Causalidade , Coinfecção , Criptococose/complicações , Cryptococcus gattii/patogenicidade , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/complicações , Acetilglucosaminidase/metabolismo , Animais , Comportamento Animal , Encéfalo/microbiologia , Encéfalo/patologia , Proliferação de Células , Quimiocinas/metabolismo , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/mortalidade , Coinfecção/virologia , Criptococose/imunologia , Cryptococcus gattii/imunologia , Cryptococcus neoformans/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Cães , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Interferon gama/metabolismo , Pulmão/enzimologia , Pulmão/patologia , Pulmão/virologia , Macrófagos/metabolismo , Macrófagos/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Óxido Nítrico/metabolismo , Infecções por Orthomyxoviridae/imunologia , Peroxidase/metabolismo , Ácido Peroxinitroso/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA