Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 173: 112235, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39059333

RESUMO

Slips are the leading cause of falls, and understanding slip biomechanics is crucial for preventing falls and mitigating their negative consequences. This study analyses human biomechanical responses to slips, including kinetic, kinematic, spatiotemporal, and EMG variables. We reviewed 41 studies investigating slip-induced falls in lab settings, computational models, and training approaches. Our analysis focused on reactions and effects of factors like age, fatigue, strength, perturbation intensity, and gait speed. Trailing limbs' hip extension and knee flexion interrupt the swing phase earlier, increasing the support base. The slipping leg responds with two phases: hip extension and knee flexion, then hip flexion and knee extension. Furthermore, our analysis revealed that the medial hamstring muscles play an active role in slip recoveries. Their activation in the slipping limb allows for hip extension and knee flexion, while in the trailing limb, their activation results in the foot touching down. Additionally, successful slip recoveries were associated with co-contraction of the Tibialis Anterior (TA) and Medial Gastrocnemius (MG), which increases ankle joint stability and facilitates foot contact with the ground. Our review identifies various factors that influence biomechanical and muscular responses to slips, including age, perturbation intensity, gait speed, muscular fatigue, and muscular strength. These findings have important implications for designing interventions to prevent slip-related falls, including cutting-edge technology devices based on a deeper understanding of slip recoveries. Future research should explore the complex interplay between biomechanics, muscle activation patterns, and environmental factors to improve slip-fall prevention strategies.

2.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501958

RESUMO

Humans' balance recovery responses to gait perturbations are negatively impacted with ageing. Slip and trip events, the main causes preceding falls during walking, are likely to produce severe injuries in older adults. While traditional exercise-based interventions produce inconsistent results in reducing patients' fall rates, perturbation-based balance training (PBT) emerges as a promising task-specific solution towards fall prevention. PBT improves patients' reactive stability and fall-resisting skills through the delivery of unexpected balance perturbations. The adopted perturbation conditions play an important role towards PBT's effectiveness and the acquisition of meaningful sensor data for studying human biomechanical reactions to loss of balance (LOB) events. Hence, this narrative review aims to survey the different methods employed in the scientific literature to provoke artificial slips and trips in healthy adults during treadmill and overground walking. For each type of perturbation, a comprehensive analysis was conducted to identify trends regarding the most adopted perturbation methods, gait phase perturbed, gait speed, perturbed leg, and sensor systems used for data collection. The reliable application of artificial perturbations to mimic real-life LOB events may reduce the gap between laboratory and real-life falls and potentially lead to fall-rate reduction among the elderly community.


Assuntos
Marcha , Equilíbrio Postural , Humanos , Idoso , Equilíbrio Postural/fisiologia , Marcha/fisiologia , Acidentes por Quedas/prevenção & controle , Caminhada/fisiologia , Velocidade de Caminhada
3.
Sensors (Basel) ; 22(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684649

RESUMO

The recognition of Activities of Daily Living (ADL) has been a widely debated topic, with applications in a vast range of fields. ADL recognition can be accomplished by processing data from wearable sensors, specially located at the lower trunk, which appears to be a suitable option in uncontrolled environments. Several authors have addressed ADL recognition using Artificial Intelligence (AI)-based algorithms, obtaining encouraging results. However, the number of ADL recognized by these algorithms is still limited, rarely focusing on transitional activities, and without addressing falls. Furthermore, the small amount of data used and the lack of information regarding validation processes are other drawbacks found in the literature. To overcome these drawbacks, a total of nine public and private datasets were merged in order to gather a large amount of data to improve the robustness of several ADL recognition algorithms. Furthermore, an AI-based framework was developed in this manuscript to perform a comparative analysis of several ADL Machine Learning (ML)-based classifiers. Feature selection algorithms were used to extract only the relevant features from the dataset's lower trunk inertial data. For the recognition of 20 different ADL and falls, results have shown that the best performance was obtained with the K-NN classifier with the first 85 features ranked by Relief-F (98.22% accuracy). However, Ensemble Learning classifier with the first 65 features ranked by Principal Component Analysis (PCA) presented 96.53% overall accuracy while maintaining a lower classification time per window (0.039 ms), showing a higher potential for its usage in real-time scenarios in the future. Deep Learning algorithms were also tested. Despite its outcomes not being as good as in the prior procedure, their potential was also demonstrated (overall accuracy of 92.55% for Bidirectional Long Short-Term Memory (LSTM) Neural Network), indicating that they could be a valid option in the future.


Assuntos
Atividades Cotidianas , Inteligência Artificial , Acidentes por Quedas/prevenção & controle , Algoritmos , Humanos , Redes Neurais de Computação
4.
Sensors (Basel) ; 22(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35161731

RESUMO

Recently, fall risk assessment has been a main focus in fall-related research. Wearable sensors have been used to increase the objectivity of this assessment, building on the traditional use of oversimplified questionnaires. However, it is necessary to define standard procedures that will us enable to acknowledge the multifactorial causes behind fall events while tackling the heterogeneity of the currently developed systems. Thus, it is necessary to identify the different specifications and demands of each fall risk assessment method. Hence, this manuscript provides a narrative review on the fall risk assessment methods performed in the scientific literature using wearable sensors. For each identified method, a comprehensive analysis has been carried out in order to find trends regarding the most used sensors and its characteristics, activities performed in the experimental protocol, and algorithms used to classify the fall risk. We also verified how studies performed the validation process of the developed fall risk assessment systems. The identification of trends for each fall risk assessment method would help researchers in the design of standard innovative solutions and enhance the reliability of this assessment towards a homogeneous benchmark solution.


Assuntos
Dispositivos Eletrônicos Vestíveis , Acidentes por Quedas/prevenção & controle , Algoritmos , Reprodutibilidade dos Testes , Medição de Risco
5.
J Med Syst ; 43(5): 134, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30949770

RESUMO

Falls are a prevalent problem in actual society. Some falls result in injuries and the cost associated with their treatment is high. This is a complex problem that requires several steps in order to be tackled. Firstly, it is crucial to develop strategies that recognize the locomotion mode, indicating the state of the subject in various situations. This article aims to develop a strategy capable of identifying normal gait, the pre-fall condition, and the fall situation, based on a wearable system (IMUs-based). This system was used to collect data from healthy subjects that mimicked falls. The strategy consists, essentially, in the construction and use of classifiers as tools for recognizing the locomotion modes. Two approaches were explored. Associative Skill Memories (ASMs) based classifier and a Convolutional Neural Network (CNN) classifier based on deep learning. Finally, these classifiers were compared, providing for a tool with a good accuracy in recognizing the locomotion modes. Results have shown that the accuracy of the classifiers was quite acceptable. The CNN presented the best results with 92.71% of accuracy considering the pre-fall step different from normal steps, and 100% when not considering.


Assuntos
Acidentes por Quedas/prevenção & controle , Marcha/fisiologia , Redes Neurais de Computação , Dispositivos Eletrônicos Vestíveis , Adulto , Algoritmos , Feminino , Humanos , Locomoção/fisiologia , Masculino , Análise de Componente Principal , Curva ROC , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA