Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107777, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37720101

RESUMO

The transcription factor NRF1 resides in the endoplasmic reticulum (ER) and is constantly transported to the cytosol for proteasomal degradation. However, when the proteasome is defective, NRF1 escapes degradation and undergoes proteolytic cleavage by the protease DDI2, generating a transcriptionally active form that restores proteostasis, including proteasome function. The mechanisms that regulate NRF1 proteolytic activation and transcriptional potential remain poorly understood. This study demonstrates that the ER is a crucial regulator of NRF1 function by orchestrating its ubiquitination through the E3 ubiquitin ligase HRD1. We show that HRD1-mediated NRF1 ubiquitination is necessary for DDI2-mediated processing in cells. Furthermore, we found that deficiency in both RAD23A and RAD23B impaired DDI2-mediated NRF1 processing, indicating that these genes are essential components of the DDI2 proteolytic machinery. Our findings highlight the intricate mechanism by which the ER activates NRF1 to coordinate the transcriptional activity of an adaptation response in cells.

2.
iScience ; 25(10): 105227, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36248746

RESUMO

DNA-damage inducible 1 homolog 2 (DDI2) is a protease that activates the transcription factor NRF1. Cellular models have shown that this pathway contributes to cell-stress adaptation, for example, on proteasome inhibition. However, DDI2 physiological function is unknown. Ddi2 Knock-out (KO) mice were embryonic lethal. Therefore, we generated liver-specific Ddi2-KO animals and used comprehensive genetic analysis to identify the molecular pathways regulated by DDI2. Here, we demonstrate that DDI2 contributes to metallothionein (MT) expression in mouse and human hepatocytes at basal and upon cadmium (Cd) exposure. This transcriptional program is dependent on DDI2-mediated NRF1 proteolytic maturation. In contrast, NRF1 homolog NRF2 does not contribute to MT production. Mechanistically, we observed that Cd exposure inhibits proteasome activity, resulting in DDI2-mediated NRF1 proteolytic maturation. In line with these findings, DDI2 deficiency sensitizes cells to Cd toxicity. This study identifies a function for DDI2 that links proteasome homeostasis to heavy metal mediated toxicity.

3.
Cell Death Dis ; 13(5): 475, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589686

RESUMO

Proteasome inhibitors, such as bortezomib, are first-line therapy against multiple myeloma (MM). Unfortunately, patients frequently become refractory to this treatment. The transcription factor NRF1 has been proposed to initiate an adaptation program that regulates proteasome levels. In the context of proteasome inhibition, the cytosolic protease DDI2 cleaves NRF1 to release an active fragment that translocates to the nucleus to promote the transcription of new proteasome subunits. However, the contribution of the DDI2-NRF1 pathway to bortezomib resistance is poorly understood. Here we show that upon prolonged bortezomib treatment, MM cells become resistant to proteasome inhibition by increasing the expression of DDI2 and consequently activation of NRF1. Furthermore, we found that many MM cells became more sensitive to proteasome impairment in the context of DDI2 deficiency. Mechanistically, we demonstrate that both the protease and the HDD domains of DDI2 are required to activate NRF1. Finally, we show that partial inhibition of the DDI2-protease domain with the antiviral drug nelfinavir increased bortezomib susceptibility in treated MM cells. Altogether, these findings define the DDI2-NRF1 pathway as an essential program contributing to proteasome inhibition responses and identifying DDI2 domains that could be targets of interest in bortezomib-treated MM patients.


Assuntos
Antineoplásicos , Ácido Aspártico Proteases , Mieloma Múltiplo , Antineoplásicos/uso terapêutico , Ácido Aspártico Endopeptidases , Ácido Aspártico Proteases/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico
4.
Oncotarget ; 8(53): 90622-90623, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29207585
5.
Front Immunol ; 6: 15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25674089

RESUMO

The contributions of γδ T-cells to immunity to infection or tumors critically depend on their activation and differentiation into effectors capable of secreting cytokines and killing infected or transformed cells. These processes are molecularly controlled by surface receptors that capture key extracellular cues and convey downstream intracellular signals that regulate γδ T-cell physiology. The understanding of how environmental signals are integrated by γδ T-cells is critical for their manipulation in clinical settings. Here, we discuss how different classes of surface receptors impact on human and murine γδ T-cell differentiation, activation, and expansion. In particular, we review the role of five receptor types: the T-cell receptor (TCR), costimulatory receptors, cytokine receptors, NK receptors, and inhibitory receptors. Some of the key players are the costimulatory receptors CD27 and CD28, which differentially impact on pro-inflammatory subsets of γδ T-cells; the cytokine receptors IL-2R, IL-7R, and IL-15R, which drive functional differentiation and expansion of γδ T-cells; the NK receptor NKG2D and its contribution to γδ T-cell cytotoxicity; and the inhibitory receptors PD-1 and BTLA that control γδ T-cell homeostasis. We discuss these and other receptors in the context of a five-step model of receptor signaling in γδ T-cell differentiation and activation, and discuss its implications for the manipulation of γδ T-cells in immunotherapy.

6.
J Immunol ; 192(5): 2237-43, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24489097

RESUMO

Cytotoxicity and IFN-γ production by human γδ T cells underlie their potent antitumor functions. However, it remains unclear where and how human γδ T cells acquire these key effector properties. Given the recent disclosure of a major contribution of the thymus to murine γδ T cell functional differentiation, in this study we have analyzed a series of human pediatric thymuses. We found that ex vivo-isolated γδ thymocytes produced negligible IFN-γ and lacked cytolytic activity against leukemia cells. However, these properties were selectively acquired upon stimulation with IL-2 or IL-15, but not IL-4 or IL-7. Unexpectedly, TCR activation was dispensable for these stages of functional differentiation. The effects of IL-2/IL-15 depended on MAPK/ERK signaling and induced de novo expression of the transcription factors T-bet and eomesodermin, as well as the cytolytic enzyme perforin, required for the cytotoxic type 1 program. These findings have implications for the manipulation of γδ T cells in cancer immunotherapy.


Assuntos
Diferenciação Celular/fisiologia , Interleucina-15/imunologia , Interleucina-2/imunologia , Sistema de Sinalização das MAP Quinases/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Imunoterapia , Lactente , Recém-Nascido , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Masculino , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Proteínas com Domínio T/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA