Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 32(20): 205603, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33567416

RESUMO

In this work, we synthesized colloidal silica nanospheres with an average size of 400 nm through the modified Stöber method and successfully fabricated an ordered close-packed silica nanosphere monolayer onto ITO-coated glass substrates using a three-step spin-coating method. ITO films showed resistivity comparable to that of commercial ITO and the silica nanosphere monolayer-coated ITO/glass substrate exhibited good optical transmittance in the visible (550 nm) and near-infrared (900 nm) regions of 62% and 82%, respectively. The results suggest that this monolayer can be used in optoelectronic devices to enhance efficiency in photovoltaic cells.

2.
J Mater Chem B ; 5(34): 7109-7117, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263901

RESUMO

The present work involves the design of a multifunctional system based on gold nanoshells (AuNSs) decorated with lanthanide-based upconversion nanoparticles (UCNPs) intended as an optical heater and a temperature probe at the nanoscale. The synthesis of NaGdF4 UCNPs doped with ions Yb3+:Er3+ was performed via thermal decomposition of lanthanide fluoride precursors at high temperatures (>300 °C) in the presence of a coordinating ligand (oleic acid). UCNPs were synthesized at three different temperatures (310, 315 and 320 °C) and characterized in terms of morphological, structural and emission properties. In view of the intended biological applications, the surface of hydrophobic oleate-capped UCNPs was modified using a silica coating to achieve sufficient water dispersibility, through a modified Stöber process using a reverse micro-emulsion method. Monodisperse NaGdF4:Yb3+:Er3+ upconversion nanocrystals (∼25 nm dia.) were obtained in cubic (at 310, 315 °C) and hexagonal (at 320 °C) phases. The UCNPs in the hexagonal phase were shown to be more suitable as temperature sensors, due to their lower red-to-green emission ratios and higher thermal sensitivities. The emission spectrum of NaGdF4:Yb3+:Er3+ (oleate- or silica-coated) UCNPs was recorded at different temperatures in the vicinity of the physiological range (20-70 °C) and presented suitable properties for application as temperature sensors, such as excellent linearity (r2 > 0.99) and sensitivity (>3 × 10-3 K-1). The heating capacity of AuNSs@UCNPs was verified by monitoring the Er3+ emission, showing their potential for application as a hyperthermia agent controlled using a nanothermometer function.

3.
Mater Sci Eng C Mater Biol Appl ; 68: 338-342, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524028

RESUMO

Layer-by-Layer (LbL) films containing silk fibroin (SF) and the 40 aminoacid-long amyloid-ß peptide (Aß1-40) were prepared with the purpose of developing a new prototype of an electrochemical immunosensor. The film showed a satisfactory growth in quartz substrate and screen-printed carbon electrodes, as observed by UV-vis spectroscopy and cyclic voltammetric, respectively. The peptide immobilized in LbL films in junction with SF shows secondary structure induced, as shown by circular dichroism measurements, favoring the interaction SF/peptide LbL film with the specific antibody. Immunosensor showed a linear response in the presence of the antibody with concentrations from 0 to 10ngmL(-1) both analyzed by current changes in 0.3V and voltammogram area. This system can be applied as a new prototype for preliminary diagnosis of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Anticorpos/química , Técnicas Biossensoriais/métodos , Fibroínas/química , Membranas Artificiais , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Animais , Humanos
4.
Biofouling ; 29(7): 775-88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23805884

RESUMO

Luminescent silica nanoparticles are frequently employed for biotechnology applications mainly because of their easy functionalization, photo-stability, and biocompatibility. Bifunctional silica nanoparticles (BSNPs) are described here as new efficient tools for investigating complex biological systems such as biofilms. Photoluminescence is brought about by the incorporation of a silylated ruthenium(II) complex. The surface properties of the silica particles were designed by reaction with amino-organosilanes, quaternary ammonium-organosilanes, carboxylate-organosilanes and hexamethyldisilazane. BSNPs were characterized extensively by DRIFT, (13)C and (29)Si solid state NMR, XPS, and photoluminescence. Zeta potential and contact angle measurements exhibited various surface properties (hydrophilic/hydrophobic balance and electric charge) according to the functional groups. Confocal laser scanning microscopy (CLSM) measurements showed that the spatial distribution of these nanoparticles inside a biofilm of Pseudomonas aeruginosa PAO1 depends more on their hydrophilic/hydrophobic characteristics than on their size. CLSM observations using two nanosized particles (25 and 68 nm) suggest that narrow diffusion paths exist through the extracellular polymeric substances matrix.


Assuntos
Biofilmes , Incrustação Biológica , Nanopartículas/química , Pseudomonas aeruginosa/fisiologia , Dióxido de Silício/química , Compostos de Rutênio/química , Propriedades de Superfície
5.
Int J Biomater ; 2011: 175362, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21961004

RESUMO

The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA) nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl(2) followed by Na(2)HPO(4). BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%-50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA), similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration.

6.
J Nanosci Nanotechnol ; 11(3): 2433-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21449404

RESUMO

Luminescent Eu3+ and Er3+ doped SnO2 powders have been prepared by Sn4+ hydrolysis followed by a controlled growth reaction using a particle's surface modifier in order to avoid particles aggregation. The powders so obtained doped with up to 2 mol% rare earth ions are fully redispersable in water at pH > 8 and present the cassiterite structure. Particles size range from 3 to 10 nm as determined by Photon Correlation Spectroscopy. Rare earth ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn4+, for doping concentration smaller than 0.05 mol%. For higher concentration they are also located at the particles surface. The presence of Eu3+ ions at the surface of the particles hinder their growth and has therefore allowed the preparation of new materials consisting of water redispersable powders coated with Eu(3+)-beta diketonate complexes. Enhanced UV excited photoluminescence was observed in water. SnO2 single layers with thickness up to 200 nm and multilayer coatings were spin coated on borosilicate glass substrates from the colloidal suspensions. Waveguiding properties were evaluated by the prism coupling technique. For a 0.3 microm planar waveguide single propagating mode was observed with attenuation coefficient of 3.5 dB/cm at 632.8 nm.


Assuntos
Cristalização/métodos , Medições Luminescentes/métodos , Metais Terras Raras/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Estanho/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Pós , Refratometria , Propriedades de Superfície
7.
J Nanosci Nanotechnol ; 11(3): 2540-4, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21449421

RESUMO

An Er(3+)-doped SiO2:Ta2O5 optical channel waveguide and nanocomposite were prepared by the sol-gel route at a Si:Ta 50:50 molar ratio. Channels with an excellent surface profile were easily and quickly fabricated by focusing a femtosecond laser onto the surface of multilayered films deposited on SiO2/Si substrates. In parallel, the same sol used to prepare the film was annealed at 900, 1000, and 1100 degrees C for 2 h, to get the nanocomposite materials. A broadband NIR emission around 1538 nm, assigned to the 4I13/2 --> 4I15/2 transition of the Er3+ ions was observed in the nanocomposites of amorphous SiO2 containing dispersed Ta2O5 nanocrystals. The 4I13/2 lifetime and emission bandwidth depend on the annealing temperature. In conclusion, Er(3+)-doped SiO2:Ta2O5 channel waveguides and nanocomposites are promising materials for photonic applications.


Assuntos
Cerâmica/química , Nanoestruturas/química , Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Transição de Fase
8.
Langmuir ; 26(17): 14170-6, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20684653

RESUMO

Luminescent Eu(3+)-containing polyphosphate-tungstate aqueous colloidal systems were prepared and studied as a function of the relative polyphosphate-tungstate content. In polyphosphate-rich solutions, Eu(3+) ions occupy cagelike sites composed of phosphate groups from the metaphosphate chains. In these sites, an average number of 0.5 water molecule coordinates to an Eu(3+) ion and the (5)D(0) emission quantum efficiency is 0.22. Tungstate addition leads to important modifications in neighboring Eu(3+) leading to coordination sites in the aqueous medium where metal ions are completely hidden from interactions with solvent molecules. Transmission electron microscopy results clearly show W-rich nanoparticles with sizes between 5 and 10 nm for all tungstate relative concentrations. For high tungstate relative contents (above 30 mol %), spectroscopic results suggest the presence of Eu(3+) in polyoxometalate (POM)-like sites by comparison with the well-known decatungstoeuropate [EuW(10)O(36)](9-) structure. These new aqueous colloids display surprisingly high (5)D(0) emission quantum efficiencies of ca 80% because of the strong ligand field provided by tungstate POM ligands and the complete absence of water molecules from the Eu(3+) first coordination shell.

9.
Nanotechnology ; 21(15): 155603, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20332559

RESUMO

Ordered mesoporous highly luminescent SiO2 particles have been synthesized by spray pyrolysis from solutions containing tetraethylorthosilicate (TEOS) and either cetyltrimethylammonium bromide (CTAB) or the block copolymer Pluronic F-68 as structure-directing agents. Rhodamine B (RhB)-containing samples were prepared by using a simple wet impregnation method followed by the growing of a second silica shell in order to prevent leaching of the dye. The obtained materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder x-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and photoluminescence (PL). Powders with polydisperse spherical grains were obtained displaying an ordered hexagonal array of mesochannels. Luminescence results reveal that RhB molecules have been successfully encapsulated into the channels of mesoporous particles as monomeric species and that a well-defined silica coating hindered dye leaching.

10.
J Chem Phys ; 120(20): 9638-47, 2004 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-15267977

RESUMO

Glass structure and fluorine motion dynamics are investigated in lead-cadmium fluorgermanate glasses by means of differential scanning calorimetry, Raman scattering, x-ray absorption (EXAFS), electrical conductivity (EC), and (19)F nuclear magnetic resonance (NMR) techniques. Glasses with composition 60PbGeO(3)-xPbF(2)-yCdF(2) (in mol %), with x+y=40 and x=10, 20, 30, 40, are studied. Addition of metal fluorides to the base PbGeO(3) glass leads to a decrease of the glass transition temperature (T(g)) and to an enhancement of the ionic conductivity properties. Raman and EXAFS data analysis suggest that metagermanate chains form the basic structural feature of these glasses. The NMR study leads to the conclusion that the F-F distances are similar to those found in pure crystalline phases. Experimental results suggest the existence of a heterogeneous glass structure at the molecular scale, which can be described by fluorine rich regions permeating the metagermanate chains. The temperature dependence of the NMR line shapes and relaxation times exhibits the qualitative and quantitative features associated with the high fluorine mobility in these systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA