Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36832831

RESUMO

Gluten-free batters, in general, require the incorporation of agents to control their rheology; this role is commonly played by hydrocolloids. New natural sources of hydrocolloids are under permanent research. In this regard, the functional properties of the galactomannan extracted from the seed of Gleditsia triacanthos (Gledi) have been studied. In this work, we evaluated the incorporation of this hydrocolloid, alone and in combination with Xanthan gum, in gluten-free batters and bread and compared it with Guar gum. The incorporation of hydrocolloids increased the viscoelastic profile of the batters. Gledi addition at 0.5% and 1.25% increased the elastic modulus (G') by 200% and 1500%, respectively, and similar trends were observed when Gledi-Xanthan was used. These increases were more pronounced when Guar and Guar-Xanthan were used. The batters became firmer and more elastically resistant because of the addition of hydrocolloids; batters containing Gledi had lower values of these parameters than batters containing Gledi-Xanthan. The addition of Gledi at both doses significantly increased the volume of the bread compared to the control by about 12%, while when Xanthan gum was included, a decrease was observed, especially at higher doses (by about 12%). The increase in specific volume was accompanied by a decrease in initial crumb firmness and chewiness, and during storage, they were significantly reduced. Bread prepared with Guar gum and Guar-Xanthan gum combinations was also evaluated, and the trends observed were comparable to that of bread with Gledi gum and Gledi-Xanthan gum. The results showed that Gledi addition favors the production of bread of high technological quality.

2.
Foods ; 11(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36553764

RESUMO

Native corn starch and pretreated corn starch were treated with α-amylase, glucoamylase and mixtures of both to generate starches with high porosity with conserved granular structure. Porous starches were characterized; particle size distribution analysis, nitrogen adsorption-desorption analysis, scanning electron microscopy, water and oil adsorption capacity, differential scanning calorimeter, X-ray diffraction and damaged starch techniques were used. The α-amylase/glucoamylase mixture at the highest dose was the best treatment to generate porous starches with interesting adsorption capacity and granular structure conservation. Selected starches were impregnated with chia oil using a vacuum. Pretreated corn starch modified with the α-amylase/glucoamylase mixture showed no significant differences on impregnation capacity compared with native starch with a similar enzyme treatment. The highest oxidative stability was achieved with pretreated porous starch impregnated with 10 to 25% chia oil, compared with the bulk oil (5.37 to 4.72 and 2.58 h, respectively). Results have demonstrated that vacuum impregnation could be a potential technique for the incorporation of oil in porous structures based on starch and porous starches obtained by enzymatic hydrolysis are a promising material for the incorporation and protection of oils susceptible to oxidation.

3.
J Food Sci Technol ; 59(5): 1982-1993, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35531402

RESUMO

Partially defatted chia flour (PDCF) is a by-product of oil extraction from chia seeds (Salvia hispanica L.). It may be used as an ingredient to improve food products, especially due to its antioxidant properties. In this work, we studied the best screw press extraction conditions that allow preserving the antioxidant properties of PDCF. A central composite design was applied to perform a response surface analysis in order to optimize the oil extraction. The variables considered for optimization were seed moisture content and pressing temperature. Besides the oil quality indicators, the study was focused on the assessment of PDCF properties, including total polyphenol content and antioxidant capacity determined by chemical methods. Our results show that, within the range of screw press conditions evaluated, the chemical quality of the oil and the antioxidant properties of PDCF are both preserved. The best results (highest oil yield and stability) were obtained under a seed moisture content of 10.2% and a pressing temperature of 58.5 °C. In general, our results indicate that screw press methodology can be applied to process chia seeds, using a wide range of conditions, to concurrently produce good quality oil and a PDCF with beneficial properties.

4.
J Food Sci Technol ; 59(4): 1407-1418, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35250065

RESUMO

As the demand for gluten-free products increases, the use of sorghum flour becomes a good alternative. Sponge cakes are consumed worldwide and suitable for formulations that could replace wheat flour. One of the most influential parameters on sponge cake quality is the flour particle size. In this study, we obtained and characterized different flours by milling white and brown sorghum grains and evaluated the influence of flour characteristics on batter properties and gluten-free sponge cake quality. Flours were produced by pearling, milling and sifting; and were characterized for flour composition, particle size distribution, damaged starch and water absorption. The structure, density, and viscosity of the batters; and specific volume and crumb properties of the sponge cake were evaluated. The results showed that flour composition, and properties were modified by the milling processes. Pasting viscosity increased as the particle size of the flours was reduced. Brown or white sorghum flour with smaller particle size produced high density and viscosity batters with small and homogeneous air bubbles distribution. Independently of the sorghum variety used, smaller particle size flour leads to sponge cakes of high volume and low firmness. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05150-0.

5.
J Sci Food Agric ; 102(6): 2538-2544, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34687455

RESUMO

BACKGROUND: Wheat germ has a great potential byproduct in food formulations for its outstanding nutritional value. To allow valorization, there is a need to inactivate endogenous enzymes such as lipases to avoid lipid oxidation. In the present study, the effects of microwaves on enzyme activity, as well as on functional and physical properties of wheat germ, were evaluated. Microwave treatments were performed at 50, 60 and 70 °C for 5-20 min. RESULTS: Lipase activity was severely affected at 60 and 70 °C in contrast to lipoxygenase. Microwave treatment did not cause changes in germ moisture content or color parameters. No significant changes were observed in equilibrium moisture content when comparing the adsorption and desorption processes of raw and microwave-treated wheat germ. The best model to describe sorption process was the Guggenheim-Anderson-De Boer equation. According to the dielectric properties of raw wheat germ, it could be considered as transparent to energy (ε' < 1.87 and ε'' < 0.35). Thermal analysis of proteins showed a low denaturation degree (below 35% to raw material). In addition, some functional properties were enhanced such as oil retention capacity. Conformational changes as a result of microwave treatment were associated with the slight decline observed on the monolayer moisture content. CONCLUSION: Microwave treatments of wheat germ at 60 and 70 °C were effective for lipase inactivation. Physical properties did not change drastically after the treatments. Microwave-treated wheat germ could be a good source of high-protein ingredient in food product development. © 2021 Society of Chemical Industry.


Assuntos
Micro-Ondas , Triticum , Óleos de Plantas , Temperatura , Triticum/química
6.
J Anal Methods Chem ; 2021: 9201094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912586

RESUMO

Sorghum is the fourth most important cereal produced in Argentina and the fifth worldwide. It has good agronomic characteristics and could be developed in arid areas, allowing a wide geographic distribution. Its starch content, higher than 70%, makes it possible to obtain a good yield of flours. Nutritionally, it should be noted that the grain does not have the protein fraction called prolamins, which makes it suitable for consumption by people with celiac disease. The multielemental composition constitutes an important indicator of the nutritional profile of the grains and allows, together with other parameters, to select the most suitable varieties for human consumption. In its determination, the preanalytical stage is decisive to obtain a reliable result. Organic samples are a challenge for sample introduction systems that use plasma-based techniques. As an alternative to conventional pretreatment with a microwave-assisted digestion (MWAD), a greener, quick, and simple treatment is proposed, using ultrasound-assisted extraction (UAE) in diluted acid media. The UAE method accelerates analysis times, improves performance and productivity, and was applied to sorghum samples cultivated in the province of La Pampa (Argentina). Microwave-induced plasma optical emission spectrometry (MIP OES) was employed for the determination of Cu, K, Mg, Mn, P, and Zn. The detection limits found ranged from 0.6 (Cu) to 89 (P) mg kg-1, and the precision expressed by the relative standard deviation (RSD) was ≤7.7% (Zn). For validation, a maize reference material (NCS ZC 73010) was evaluated. The principal component analysis revealed three different groupings related to the sorghum varieties' mineral profile.

7.
J Sci Food Agric ; 99(3): 1351-1357, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30094850

RESUMO

BACKGROUND: The development of new products with a focus on nutrition, rather than other technical aspects, is essential to improve the quality of celiac diets. Nutritional attributes of white and brown sorghum gluten-free pasta developed in a previous work were analyzed. The extent and kinetics of starch in vitro digestion, estimated glycemic index (eGI), potentially bioaccessible and dialyzable polyphenols, and antioxidant activity were evaluated and compared with commercial products. RESULTS: Sorghum flour samples were used to obtain pasta with high protein (≈170 g kg-1 ), dietary fiber (≈80 g kg-1 ), polyphenols (2.6 g GA kg-1 pasta), and antioxidant activity. This sorghum pasta showed slower starch in vitro digestion than the other gluten-free pasta, with a high level of protein hydrolysis (76%). The highest eGI was observed in a rice sample (69.8) followed by a corn-based pasta (66.4). White and brown sorghum gluten-free pasta showed 2.9 and 2.4 times, respectively, higher potentially bioaccessible polyphenol content compared to that in cooked pasta. No significant variation in antioxidant activity was found in sorghum pasta after digestion and around 48% and 36% of activity was detected in dialysate. CONCLUSION: Both types of sorghum gluten-free pasta have demonstrated their nutritional value and represent a good potential alternative to current commercial pasta. © 2018 Society of Chemical Industry.


Assuntos
Antioxidantes/metabolismo , Dieta Livre de Glúten/economia , Digestão , Sorghum/metabolismo , Amido/metabolismo , Antioxidantes/química , Culinária , Farinha/análise , Farinha/economia , Glutens/análise , Glutens/economia , Valor Nutritivo , Sorghum/química , Amido/análise
8.
J Sci Food Agric ; 98(13): 4903-4910, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29569241

RESUMO

BACKGROUND: Omega-3 and omega-6 fatty acids-rich oils suffer oxidation reactions that alter their chemical and organoleptic quality. Microencapsulation can be a powerful tool for protection against ambient conditions. In the present study, the addition of microencapsulated chia oil as an ingredient in bread preparations and its effect on the technological and chemical quality of breads was investigated. RESULTS: Microencapsulation of chia oil was carried out by freeze-drying with soy proteins as wall material and oil release was determined under in vitro gastric and intestinal conditions. Encapsulated oil-containing bread showed no differences in specific volume, average cell area, firmness and chewiness with respect to control bread. Unencapsulated oil-containing bread showed a marked increase in hydroperoxide values respect to control, whereas encapsulated oil-containing bread values were not affected by baking and bread storage. The fatty acid profiles showed a decrease of 13% and 16%, respectively, in α-linolenic acid in the encapsulated and unencapsulated oils with respect to bulk chia oil. Sensory analysis showed no significant differences between bread samples. CONCLUSION: The addition of encapsulated chia oil did not alter the technological quality of breads and prevented the formation of hydroperoxide radicals. A ration of encapsulated oil-containing bread contributes 60% of the recommended dietary intake of omega-3 fatty acids. © 2018 Society of Chemical Industry.


Assuntos
Pão/análise , Aditivos Alimentares/química , Manipulação de Alimentos/métodos , Óleos de Plantas/química , Salvia/química , Adulto , Ácidos Graxos Ômega-3/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paladar
9.
J Food Sci Technol ; 54(9): 2613-2625, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28928501

RESUMO

The aim of this study was to establish relationships between structural fat properties and sensory, physical and textural attributes of yeast-leavened laminated salty products. Refined bovine fat (MG1) and shortening (MG2), with a solid fat content (SFC) higher than 20% at temperature range of 15-35 °C were more viscous and less sensitive to temperature changes. The micrographs of dough|fat|dough sections corresponding to samples with MG1 and MG2 revealed a lower penetration of the fat sheet in the dough section due to the more entangled fat structures that did not allow a great flow throughout the dough layer. Consequently, the structure of laminated dough pieces made the systems highly resistant to deformation. The laminated dough pieces elaborated with these fats showed the highest increments in their height and maintained symmetry. Products with fat with least SFC and higher destructuration rate produced smoother laminated structures due to the presence of pores. While products with MG1 and MG2 showed tortuous images and complex structures, associated to layers and extended pores. MG1 and MG2 products were preferred (flavor and appearance) over those with MG3. The highest ranking samples in the acceptability analysis were symmetric, presented very flaky crusts and had a high level of lamination.

10.
J Food Sci Technol ; 54(1): 71-81, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28242905

RESUMO

Wheat germ has an important enzymatic activity, being lipases the enzymes which cause the highest impact in the reduction of shelf life. The objective of this study was to evaluate the effects of infrared radiation on wheat germ stabilization in an attempt to extend the shelf life. The effects of treatment time, gap (sample distance to IR emitters) and infrared radiation intensity on wheat germ were analyzed through response surface methodology. Final moisture content, final temperature, color of germ and germ oil quality parameters: free fatty acid content changes and total tocopherol content were the responses evaluated using a Box-Behnken design. A combination of an infrared radiation intensity of 4800 W/m2, a 3 min treatment and 0.2 m emitter-sample distance were the best processing condition to stabilize the wheat germ without significantly reduction of the tocopherol content. A confirmatory experiment was conducted with these optimal conditions, and the heat-treated and raw germ samples were stored for 90 days at room temperature in three layer packages to protect them against light and oxygen. The oil quality parameters indicated that the raw germ had a shelf-life of about 15 days, with the heat-treated wheat germ maintaining its quality for at least 90 days under these stored conditions.

11.
J Sci Food Agric ; 97(5): 1607-1615, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27418199

RESUMO

BACKGROUND: This study forms part of a broader project aimed at understanding the role of fibers from different sources in high-fat, high-sugar biscuits and at selecting the best fibers for biscuit quality. The main purpose of this work was to understand the rheological and structural properties involved in fiber-enriched biscuit dough. High-amylose corn starch (RSII), chemically modified starch (RSIV), oat fiber (OF) and inulin (IN) were used at two different levels of incorporation (6 and 12 g) in dough formulation. The influence of fiber on the properties of biscuit dough was studied via dynamic rheological tests, confocal microscopy and spreading behavior. Biscuit quality was assessed by width/thickness factor, texture and surface characteristics, total dietary fiber and sensory evaluation. RESULTS: Main results indicated that IN incorporation increased the capacity of dough spreading during baking and thus improved biscuit quality. OF reduced dough spreading during baking and strongly increased its resistance to deformation. RSII and RSIV slightly affected the quality of the biscuits. Sensory evaluation revealed that the panel liked IN-incorporated biscuits as much as control biscuits. CONCLUSION: The increase in total dietary fiber modified dough behavior and biscuit properties, and the extent of these effects depended on the type of fiber incorporated. © 2016 Society of Chemical Industry.


Assuntos
Culinária/métodos , Fibras na Dieta , Avena , Tecnologia de Alimentos , Inulina/química , Reologia , Amido/química , Zea mays
12.
J Food Sci Technol ; 53(10): 3675-3684, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28017982

RESUMO

The objective of this work was to investigate the contribution of α-amylase and amyloglucosidase to dough fermentation process and bread quality, as an alternative to reduce the negative effects caused by high damaged starch in flour. The dough properties during the proofing process were modified by higher damaged starch content. Higher damaged starch in flour resulted into breads with darker crusts and firmer crumbs. The enzymes reduced the negative influence of damaged starch, producing a positive effect on the maximum carbon dioxide pressure reached during fermentation and the carbon dioxide volume retained by dough. Incorporation of alpha-amylase reduced dimension ratio and crumb firmness attributes; however, progressive additions of this additive produced lower bread volume and red intensity, and higher crumb firmness. The amyloglucosidase additions produced higher bread volume and red intensity of the crust, and lower brightness crust and gas cell diameter. Incorporation of amyloglucosidase was beneficial in the presence of a suitable quantity of damaged starch. The results confirmed that the α-amylase and amyloglucosidase additions significantly improved bread quality. Incorporation of α-amylase and amyloglucosidase led to higher bread loaves and lower crumb firmness throughout the storage period, promoting a longer life of the finished product.

13.
J Sci Food Agric ; 96(7): 2539-46, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26251131

RESUMO

BACKGROUND: During wheat milling, starch granules can experience mechanical damage, producing damaged starch. High levels of damaged starch modify the physicochemical properties of wheat flour, negatively affecting the dough behavior as well as the flour quality and cookie and bread making quality. The aim of this work was to evaluate the effect of α-amylase, maltogenic amylase and amyloglucosidase on dough rheology in order to propose alternatives to reduce the issues related to high levels of damaged starch. RESULTS: The dough with a high level of damaged starch became more viscous and resistant to deformations as well as less elastic and extensible. The soluble fraction of the doughs influenced the rheological behavior of the systems. The α-amylase and amyloglucosidase reduced the negative effects of high damaged starch contents, improving the dough rheological properties modified by damaged starch. The rheological behavior of dough with the higher damaged-starch content was related to a more open gluten network arrangement as a result of the large size of the swollen damaged starch granules. CONCLUSION: We can conclude that the dough rheological properties of systems with high damaged starch content changed positively as a result of enzyme action, particularly α-amylase and amyloglucosidase additions, allowing the use of these amylases and mixtures of them as corrective additives. Little information was reported about amyloglucosidase activity alone or combined with α-amylase. The combinations of these two enzymes are promising to minimize the negative effects caused by high levels of damaged starch on product quality. More research needs to be done on bread quality combining these two enzymes. © 2015 Society of Chemical Industry.


Assuntos
Farinha , Manipulação de Alimentos , Glutens/química , Reologia , Amido , Triticum , Culinária , Glucana 1,4-alfa-Glucosidase , Glicosídeo Hidrolases , alfa-Amilases
14.
Food Technol Biotechnol ; 53(4): 446-453, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27904379

RESUMO

The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products.

15.
Food Sci Technol Int ; 20(2): 127-35, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23733824

RESUMO

The technological and sensory quality of pasta made from bread wheat flour substituted with wholemeal amaranth flour (Amaranthus mantegazzianus) at four levels, 15, 30, 40 and 50% w/w was investigated. The quality of the resulted pasta was compared to that of control pasta made from bread wheat flour. The flours were analyzed for chemical composition and pasting properties. Cooking behavior, color, raw and cooked pasta texture, scanning electron microscopy and sensory evaluation were determined on samples. The pasta obtained from amaranth flour showed some detriment of the technological and sensory quality. So, a maximum substitution level of 30% w/w was defined. This is an equilibrium point between an acceptable pasta quality and the improved nutritional and functional properties from the incorporation of amaranth flour.


Assuntos
Amaranthus/química , Tecnologia de Alimentos , Triticum/química , Comportamento do Consumidor , Culinária , Humanos , Sementes/química
16.
Carbohydr Polym ; 98(2): 1449-57, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24053826

RESUMO

The effect of mechanical damage on wheat starch granules surface, at a microstructural level, was investigated by scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM), and image textural analysis. The SEM and ESEM images of the native sample showed that the starch granules had smooth, flat surfaces and smooth edges. The samples with higher damaged starch content exhibited granular distortion, irregularity and less uniformity. The fractal dimension of contour parameter increased with mechanical damage, indicating that the surface irregularities quantitatively increased due to the damage. The surfaces of damaged granules showed depressions of different shapes and sizes. The roughness parameters and fractal dimension of the surface increased as a result of the mechanical damage. The surface of damaged granules showed higher entropy and lower homogeneity values when damaged starch increased. The results indicated that the mechanical process caused structural modifications at nano level.


Assuntos
Grânulos Citoplasmáticos/ultraestrutura , Amido/química , Triticum/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Estresse Mecânico
17.
J Food Sci Technol ; 50(6): 1144-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24426027

RESUMO

This study was designed to optimize drying and inactivation of heat-labile inhibitors conditions of soybean by using a fluidized bed dryer, in order to shorten treatment time and to reduce losses in end-product quality such as soy flour color and soy protein solubility. The independent variables were initial moisture of soybeans, heating time and temperature of air entering the fluidization chamber. The response variables studied were final moisture of soybeans, inactivation of urease, soy flour color and soy protein solubility. Response surface methodology was able to model the response of the different studied variables. For each response group, relevant terms were included into an equation; the behavior of response was predicted within the experimental area and was presented as a response surface. The results suggested that a combination of soybean initial moisture of 0.14 g/g (wb), treatment time of 3.4 min and hot-air temperature of 136.5 °C could be a good processing combination of parameters for heating soybean using hot-air in order to reduce treatment time and quality losses in soybean flour. Thus, fluidized bed drying technology may be used as an alternative industrial method to eliminate the antinutritional factors.

18.
J Agric Food Chem ; 51(24): 7176-81, 2003 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-14611190

RESUMO

Grain hardness is a quality parameter in wheat and other cereals. In wheat, a group of M(r) 15 000 proteins called friabilins have been shown to be related to grain hardness. The objective of this study was to determine the presence of friabilins on starch granules of different triticale lines and their relationship with grain texture and baking quality. The triticale lines studied have a wide range of hardness, which presented correlation with baking quality parameters such as damaged starch and solvent retention capacity. All of the triticale lines contained friabilins on the starch granules. However, the correlation between hardness and friabilin content was not observed, suggesting that these proteins would not be directly involved in grain texture determination of triticale. Consequently, friabilin content did not have any relation with cookie quality in triticale flours, but it could be related to breadmaking quality because it has a positive correlation with the sodium dodecyl sulfate sedimentation index.


Assuntos
Culinária , Grão Comestível/química , Proteínas de Plantas/análise , Sementes/química , Pão , Fenômenos Químicos , Físico-Química , Farinha/análise , Manipulação de Alimentos , Tamanho da Partícula , Proteínas de Plantas/isolamento & purificação , Amido/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA