Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 12: 102492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38089153

RESUMO

Zebrafish larvae are a model organism increasingly used in the study of the effect of neuroactive chemicals on vertebrate sleep/wake cycles. Sleep disturbances have a negative impact on mood, cognition and overall health. Here we present a protocol to assess over 24 h sleep/wake cycles in zebrafish larvae subjected to 12 h light/dark periods in 48-well plates, using video-tracking technologies. The protocol can be used to determine if the exposure to environmental pollutants or drugs can lead to sleep disturbances. The results on the effect of the tire rubber-derived 6PPD-quinone on zebrafish sleep/wake cycles presented here demonstrate the suitability of using this protocol in fish neurotoxicity studies. This protocol provides a new relevant tool to be used in the pharmacology and toxicology fields.

2.
Sci Total Environ ; 896: 165240, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406704

RESUMO

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone) is a degradation product of 6PPD, an antioxidant widely used in rubber tires. 6PPD-quinone enters aquatic ecosystems through urban stormwater runoff and has been identified as the chemical behind the urban runoff mortality syndrome in coho salmon. However, the available data suggest that the acute effects of 6PPD-quinone are restricted to a few salmonid species and that the environmental levels of this chemical should be safe for most fish. In this study, larvae of a "tolerant" fish species, Danio rerio, were exposed to three environmental concentrations of 6PPD-quinone for only 24 h, and the effects on exploratory behavior, escape response, nonassociative learning (habituation), neurotransmitter profile, wake/sleep cycle, circadian rhythm, heart rate and oxygen consumption rate were analyzed. Exposure to the two lowest concentrations of 6PPD-quinone resulted in altered exploratory behavior and habituation, an effect consistent with some of the observed changes in the neurotransmitter profile, including increased levels of acetylcholine, norepinephrine, epinephrine and serotonin. Moreover, exposure to the highest concentration tested altered the wake/sleep cycle and the expression of per1a, per3 and cry3a, circadian clock genes involved in the negative feedback loop. Finally, a positive chronotropic effect of 6PPD-quinone was observed in the hearts of the exposed fish. The results of this study emphasize the need for further studies analyzing the effects of 6PPD-quinone in "tolerant" fish species.


Assuntos
Benzoquinonas , Sistema Nervoso Central , Exposição Ambiental , Fenilenodiaminas , Borracha , Poluentes Químicos da Água , Peixe-Zebra , Animais , Benzoquinonas/análise , Benzoquinonas/toxicidade , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiologia , Ecossistema , Larva/efeitos dos fármacos , Larva/metabolismo , Fenilenodiaminas/análise , Fenilenodiaminas/toxicidade , Borracha/química , Borracha/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA