Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641354

RESUMO

One cannot survive without regularly urinating and defecating. People with neurological injury (spinal cord injury, traumatic brain injury, stroke) or disease (multiple sclerosis, Parkinson's disease, spina bifida) and many elderly are unable to voluntarily initiate voiding. The great majority of them require bladder catheters to void urine and "manual bowel programs" with digital rectal stimulation and manual extraction to void stool. Catheter-associated urinary tract infections frequently require hospitalization, while manual bowel programs are time-consuming (1-2 hours), stigmatizing, and cause rectal pain and discomfort. Laxatives and enemas produce defecation, but onset and duration are unpredictable, prolonged, and difficult to control, which can produce involuntary defecation and fecal incontinence. Patients with spinal cord injury (SCI) consider recovery of bladder and bowel function a higher priority than recovery of walking. Bladder and bowel dysfunction are a top reason for institutionalization of elderly. Surveys indicate that convenience, rapid onset and short duration, reliability and predictability, and efficient voiding are priorities of SCI individuals. Despite the severe, unmet, medical need; there is no literature regarding on-demand, rapid-onset, short-duration, drug-induced, voiding therapies. This article provides in depth discussion of recent discovery and development of two candidates for on-demand voiding therapies. The first, DTI-117, a neurokinin2 receptor agonist, induces both urination and defecation after systemic administration. The second, DTI-301, is a TRPV1 receptor agonist that induces defecation after intrarectal administration. The review also presents clinical studies of a combination drug therapy administered via iontophoresis and preclinical studies of neuromodulation devices that induce urination and defecation. Significance Statement Safe, effective, on-demand, rapid-onset, short-duration, drug-induced, voiding therapy could eliminate or reduce need for bladder catheters, manual bowel programs, and colostomies in patient populations that are unable to voluntarily initiate voiding. People with spinal injury place more importance on restoring bladder and bowel control than restoring their ability to walk. This paradigm-changing therapy would reduce stigmatism and healthcare costs while increasing convenience and quality of life.

2.
Neurosci Lett ; 711: 134456, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445972

RESUMO

The affinity, potency, efficacy, and selectivity of the NK2 receptor agonist GR64349 ([Lys3,Gly8,-R-γ-lactam-Leu9]NKA(3-10)) at human recombinant NK2 and NK1 receptors was examined. In radioligand binding studies, GR64349 displaced [125I]-NKA binding to NK2 receptors with high affinity (pKi 7.77 + 0.10) but only weakly displaced [3H]-septide binding to NK1 receptors (pKi <5). In functional studies examining increases in intracellular inositol-1 phosphate (IP-1) accumulation, calcium levels, and cyclic AMP synthesis, GR64349 was a full agonist by reference to the endogenous agonists NKA (NK2 receptors) and substance P (NK1 receptors). GR64349 increased IP-1 accumulation with 1,400-fold greater potency in cells expressing NK2 receptors (pEC50 9.10 + 0.16) than cells expressing NK1 receptors (pEC50 5.95 + 0.80). For calcium responses, GR64349 was 500-fold more potent in the assay using NK2 receptors (pEC50 9.27 + 0.26) than NK1 receptors (pEC50 6.55 + 0.16). GR64349 also stimulated cyclic AMP synthesis in both cell lines, and was almost 900-fold more potent at NK2 receptors (pEC50 10.66 + 0.27) than NK1 receptors (pEC50 7.71 + 0.41). These findings confirm that GR64349 is the most selective NK2 receptor agonist described to date.


Assuntos
Receptores da Neurocinina-1/agonistas , Receptores da Neurocinina-2/agonistas , Animais , Células CHO , Cricetulus , Humanos , Proteínas Recombinantes/efeitos dos fármacos
3.
Neuropeptides ; 77: 101956, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31324387

RESUMO

The effects of the neurokinin NK2 receptor agonist [Lys5,MeLeu9,Nle10]-NKA(4-10) (LMN-NKA) on bladder and colorectal function were examined in minipigs. In anesthetized animals, subcutaneous (SC) administration of 30-100 µg/kg increased peak bladder and colorectal pressures. Increases in bladder and colorectal pressure were inhibited by a 15 min pretreatment with the NK2 receptor antagonist GR 159897 (1 mg/kg intravenously (IV)). Bladder and colorectal pressures were also increased after IV (0.3 µg/kg), intranasal (IN; 100 µg/kg) and sublingual administration (SL; 5 mg/kg). There was a nonsignificant trend for hypotension (16 or 12% decrease in mean arterial pressure) after 100 µg/kg SC and 0.3 µg/kg IV, respectively, but not after 100 µg/kg IN or 5 mg/kg SL. In conscious minipigs, 30-300 µg/kg SC caused a dose-related increase in defecation that was accompanied by emesis in 38% of subjects receiving 300 µg/kg. Urination was increased after 100 µg/kg SC but not lower or higher doses. The peak plasma exposure (Cmax) after 100 µg/kg SC was 123 ng/mL, and area under the curve (AUC) was 1790 min * ng/mL. Defecation response rates (~82%) were maintained after SC administration of LMN-NKA (30 µg/kg) given 3 times daily over 5 consecutive days. Defecation rates were higher after a single dose of 100 µg/kg IN compared with vehicle, but this did not reach significance. After 7-10 mg/kg SL, 83% of animals urinated and defecated, and none had emesis. The data support the feasibility of developing a convenient and well-tolerated route of administration of LMN-NKA for human use. Minipigs may be a suitable species for toxicology studies with LMN-NKA due to the relatively low rate of emesis in this species.


Assuntos
Colo/efeitos dos fármacos , Defecação/efeitos dos fármacos , Receptores da Neurocinina-2/agonistas , Reto/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos , Micção/efeitos dos fármacos , Animais , Indóis/farmacologia , Piperidinas/farmacologia , Pressão , Receptores da Neurocinina-2/antagonistas & inibidores , Suínos , Porco Miniatura
4.
PLoS One ; 13(10): e0205894, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30359406

RESUMO

A series of peptide NK2 receptor agonists was evaluated for affinity, potency, efficacy, and selectivity at human recombinant NK2 and NK1 receptors expressed in CHO cells to identify compounds with the greatest separation between NK2 and NK1 receptor agonist activity. Binding studies were performed using displacement of [125I]-NKA binding to NK2 receptors and displacement of [3H]-Septide binding to NK1 receptors expressed in CHO cells. Functional studies examining the increase in intracellular calcium levels and cyclic AMP stimulation were performed using the same cell lines. A correlation was demonstrated between binding affinities (Ki) and potency to increase intracellular calcium (EC50) for NK2 and NK1 receptors. Ranking compounds by their relative affinity (Ki) or potency (EC50) at NK2 or NK1 receptors indicated that the most selective NK2 agonists tested were [Lys5,MeLeu9,Nle10]-NKA(4-10) (NK1/NK2 Ki ratio = 674; NK1/NK2 EC50 ratio = 105) and [Arg5,MeLeu9,Nle10]-NKA(4-10) (NK1/NK2 Ki ratio = 561; NK1/NK2 EC50 ratio = 70). The endogenous peptide, NKA, lacked selectivity with an NK1/NK2 Ki ratio = 20 and NK1/NK2 EC50 ratio = 1. Of the compounds selected for evaluation in cyclic AMP stimulation assays, [ß-Ala8]-NKA(4-10) had the greatest selectivity for activation of NK2 over NK1 receptors (NK1/NK2 EC50 ratio = 244), followed by [Lys5,MeLeu9,Nle10]-NKA(4-10) (ratio = 74), and NKA exhibited marginal selectivity (ratio = 2.8).


Assuntos
Neurocinina A/análogos & derivados , Neurocinina A/química , Receptores da Neurocinina-1/química , Receptores da Neurocinina-2/química , Proteínas Recombinantes/química , Animais , Células CHO , Cálcio/metabolismo , Membrana Celular/metabolismo , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Peptídeos/química , Reprodutibilidade dos Testes
5.
Mol Med ; 17(5-6): 508-15, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21267511

RESUMO

Deterioration of diaphragm function is one of the prominent factors that contributes to the susceptibility of serious respiratory infections and development of respiratory failure in patients with Duchenne Muscular Dystrophy (DMD). The NF-κB signaling pathway has been implicated as a contributing factor of dystrophic pathology, making it a potential therapeutic target. Previously, we demonstrated that pharmacological inhibition of NF-κB via a small NEMO Binding Domain (NBD) peptide was beneficial for reducing pathological features of mdx mice. Now, we stringently test the effectiveness and clinical potential of NBD by treating mdx mice with various formulations of NBD and use diaphragm function as our primary outcome criteria. We found that administering DMSO-soluble NBD rescued 78% of the contractile deficit between mdx and wild-type (WT) diaphragm. Interestingly, synthesis of a GLP NBD peptide as an acetate salt permitted its solubility in water, but as a negative consequence, also greatly attenuated functional efficacy. However, replacing the acetic acid counterion of the NBD peptide with trifluoroacetic acid retained the peptide's water solubility and significantly restored mdx diaphragm contractile function and improved histopathological indices of disease in both diaphragm and limb muscle. Together, these results support the feasibility of using a mass-produced, water-soluble NBD peptide for clinical use.


Assuntos
Diafragma/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , NF-kappa B/metabolismo , Peptídeos/uso terapêutico , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/metabolismo , Peptídeos/síntese química , Peptídeos/química
6.
Proc Natl Acad Sci U S A ; 103(27): 10461-10466, 2006 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-16793926

RESUMO

We report here the results of a chemical genetic screen using small molecules with known pharmacologies coupled with a cortical brain slice-based model for ischemic stroke. We identified a small-molecule compound not previously appreciated to have neuroprotective action in ischemic stroke, the cardiac glycoside neriifolin, and demonstrated that its properties in the brain slice assay included delayed therapeutic potential exceeding 6 h. Neriifolin is structurally related to the digitalis class of cardiac glycosides, and its putative target is the Na(+)/K(+)-ATPase. Other cardiac glycoside compounds tested also showed neuroprotective activity, although with lower apparent potencies. In subsequent whole-animal studies, we found that neriifolin provided significant neuroprotection in a neonatal model of hypoxia/ischemia and in a middle cerebral artery occlusion model of transient focal ischemia. The neuroprotective potential of Na(+)/K(+)-ATPase is of particular interest because of its known "druggability"; indeed, Food and Drug Administration-approved, small-molecule compounds such as digitoxin and digoxin have been in clinical usage for congestive heart failure and arrhythmias for several decades. Thus, an existing cardiac glycoside or closely related compound could provide an accelerated path toward clinical trial testing for ischemic stroke. Our findings underscore the important role that hypothesis-neutral, high-content, tissue-based screens can play in the identification of new candidate drugs and drug targets for the treatment of diseases for which validated therapeutic pathways are not currently available.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Glicosídeos Cardíacos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Fármacos Neuroprotetores/farmacologia , Envelhecimento/fisiologia , Animais , Isquemia Encefálica/tratamento farmacológico , Cardenolídeos/química , Cardenolídeos/farmacologia , Cardenolídeos/uso terapêutico , Glicosídeos Cardíacos/química , Glicosídeos Cardíacos/uso terapêutico , Modelos Animais de Doenças , Técnicas In Vitro , Estrutura Molecular , Fármacos Neuroprotetores/análise , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley
7.
Curr Opin Investig Drugs ; 6(1): 81-9, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15675607

RESUMO

Lower urinary tract dysfunction encompasses a number of different pathologies, and affects the lives of millions of patients worldwide. Although several pharmaceutical companies have been involved in urological drug discovery over the last several years, therapeutic options remain limited. The mainstay of treatment for overactive bladder and urinary incontinence for several years has been antimuscarinic agents. While additional antimuscarinic compounds are currently undergoing clinical development, next generation compounds aimed at novel targets and mechanisms of action are in clinical and preclinical development. This review highlights new compounds and approaches under clinical investigation by various pharmaceutical companies. These novel therapeutic strategies offer the promise of expanded treatment options for patients suffering from these disorders.


Assuntos
Desenho de Fármacos , Neurotransmissores/uso terapêutico , Incontinência Urinária/tratamento farmacológico , Animais , Humanos , Estrutura Molecular , Neurotransmissores/farmacologia , Receptores de Droga/metabolismo , Incontinência Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA