Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(21): 13517-13527, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753950

RESUMO

Solid-state reactions play a key role in materials science. The evolution of the structure of a single 350 nm Ni3Fe nanoparticle, i.e., its morphology (facets) as well as its deformation field, has been followed by applying multireflection Bragg coherent diffraction imaging. Through this approach, we unveiled a demixing process that occurs at high temperatures (600 °C) under an Ar atmosphere. This process leads to the gradual emergence of a highly strained core-shell structure, distinguished by two distinct lattice parameters with a difference of 0.4%. Concurrently, this transformation causes the facets to vanish, ultimately yielding a rounded core-shell nanoparticle. This final structure comprises a Ni3Fe core surrounded by a 40 nm Ni-rich outer shell due to preferential iron oxidation. Providing in situ 3D imaging of the lattice parameters at the nanometer scale while varying the temperature, this study─with the support of atomistic simulations─not only showcases the power of in situ multireflection BCDI but also provides valuable insights into the mechanisms at work during a solid-state reaction characterized by a core-shell transition.

2.
Adv Mater ; : e2403482, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722691

RESUMO

High-voltage LiNi0.5Mn1.5O4 (LNMO) spinel oxides are highly promising cobalt-free cathode materials to cater to the surging demand for lithium-ion batteries (LIBs). However, commercial application of LNMOs is still challenging despite decades of research. To address the challenge, the understanding of their crystallography and structural evolutions during synthesis and electrochemical operation is critical. This review aims to illustrate and to update the fundamentals of crystallography, phase transition mechanisms, and electrochemical behaviors of LNMOs. First, the research history of LNMO and its development into a LIB cathode material is outlined. Then the structural basics of LNMOs including the classic and updated views of the crystal polymorphism, interconversion between the polymorphs, and structure-composition relationship is reviewed. Afterward, the phase transition mechanisms of LNMOs that connect structural and electrochemical properties are comprehensively discussed from fundamental thermodynamics to operando dynamics at intra- and inter-particle levels. In addition, phase evolutions during overlithiation as well as thermal-/electrochemical-driven phase transformations of LNMOs are also discussed. Finally, recommendations are offered for the further development of LNMOs as well as other complex materials to unlock their full potential for future sustainable and powerful batteries.

3.
ACS Appl Mater Interfaces ; 15(51): 59319-59328, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085792

RESUMO

Li-ion battery cathode active materials obtained from different sources or preparation methods often exhibit broadly divergent performance and stability despite no obvious differences in morphology, purity, and crystallinity. We show how state-of-the-art, commercial, nominally single crystalline LiNi0.6Mn0.2Co0.2O2 (NMC-622) particles possess extensive internal nanostructure even in the pristine state. Scanning X-ray diffraction microscopy reveals the presence of interlayer strain gradients, and crystal bending is attributed to oxygen vacancies. Phase contrast X-ray nano-tomography reveals two different kinds of particles, welded/aggregated, and single crystal like, and emphasizes the intra- and interparticle heterogeneities from the nano- to the microscale. It also detects within the imaging resolution (100 nm) substantial quantities of nanovoids hidden inside the bulk of two-thirds of the overall studied particles (around 3000), with an average value of 12.5%v per particle and a mean size of 148 nm. The powerful combination of both techniques helps prescreening and quantifying the defective nature of cathode material and thus anticipating their performance in electrode assembly/battery testing.

4.
Nat Commun ; 14(1): 6975, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914690

RESUMO

Lithiation dynamics and phase transition mechanisms in most battery cathode materials remain poorly understood, because of the challenge in differentiating inter- and intra-particle heterogeneity. In this work, the structural evolution inside Li1-xMn1.5Ni0.5O4 single crystals during electrochemical delithiation is directly resolved with operando X-ray nanodiffraction microscopy. Metastable domains of solid-solution intermediates do not appear associated with the reaction front between the lithiated and delithiated phases, as predicted by current phase transition theory. Instead, unusually persistent strain gradients inside the single crystals suggest that the shape and size of solid solution domains are instead templated by lattice defects, which guide the entire delithiation process. Morphology, strain distributions, and tilt boundaries reveal that the (Ni2+/Ni3+) and (Ni3+/Ni4+) phase transitions proceed through different mechanisms, offering solutions for reducing structural degradation in high voltage spinel active materials towards commercially useful durability. Dynamic lattice domain reorientation during cycling are found to be the cause for formation of permanent tilt boundaries with their angular deviation increasing during continuous cycling.

5.
Nat Commun ; 14(1): 7833, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030620

RESUMO

Controlling the selectivity of the electrocatalytic reduction of carbon dioxide into value-added chemicals continues to be a major challenge. Bulk and surface lattice strain in nanostructured electrocatalysts affect catalytic activity and selectivity. Here, we unravel the complex dynamics of synergistic lattice strain and stability effects of Cu-Ag tandem catalysts through a previously unexplored combination of in situ nanofocused X-ray absorption spectroscopy and Bragg coherent diffraction imaging. Three-dimensional strain maps reveal the lattice dynamics inside individual nanoparticles as a function of applied potential and product yields. Dynamic relations between strain, redox state, catalytic activity and selectivity are derived. Moderate Ag contents effectively reduce the competing evolution of H2 and, concomitantly, lead to an enhanced corrosion stability. Findings from this study evidence the power of advanced nanofocused spectroscopy techniques to provide new insights into the chemistry and structure of nanostructured catalysts.

6.
J Appl Crystallogr ; 56(Pt 4): 1032-1037, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37555222

RESUMO

The CITIUS detector is a next-generation high-speed X-ray imaging detector. It has integrating-type pixels and is designed to show a consistent linear response at a frame rate of 17.4 kHz, which results in a saturation count rate of over 30 Mcps pixel-1 when operating at an acquisition duty cycle close to 100%, and up to 20 times higher with special extended acquisition modes. Here, its application for Bragg coherent diffraction imaging is demonstrated by taking advantage of the fourth-generation Extremely Brilliant Source of the European Synchrotron (ESRF-EBS, Grenoble, France). The CITIUS detector outperformed a photon-counting detector, similar spatial resolution being achieved (20 ±â€…6 nm versus 22 ±â€…9 nm) with greatly reduced acquisition times (23 s versus 200 s). It is also shown how the CITIUS detector can be expected to perform during dynamic Bragg coherent diffraction imaging measurements. Finally, the current limitations of the CITIUS detector and further optimizations for coherent imaging techniques are discussed.

7.
Nat Mater ; 22(6): 754-761, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37095227

RESUMO

Surface strain is widely employed in gas phase catalysis and electrocatalysis to control the binding energies of adsorbates on active sites. However, in situ or operando strain measurements are experimentally challenging, especially on nanomaterials. Here we exploit coherent diffraction at the new fourth-generation Extremely Brilliant Source of the European Synchrotron Radiation Facility to map and quantify strain within individual Pt catalyst nanoparticles under electrochemical control. Three-dimensional nanoresolution strain microscopy, together with density functional theory and atomistic simulations, show evidence of heterogeneous and potential-dependent strain distribution between highly coordinated ({100} and {111} facets) and undercoordinated atoms (edges and corners), as well as evidence of strain propagation from the surface to the bulk of the nanoparticle. These dynamic structural relationships directly inform the design of strain-engineered nanocatalysts for energy storage and conversion applications.

8.
ACS Nano ; 17(6): 6113-6120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926832

RESUMO

At the nanoscale, the properties of materials depend critically on the presence of crystal defects. However, imaging and characterizing the structure of defects in three dimensions inside a crystal remain a challenge. Here, by using Bragg coherent diffraction imaging, we observe an unexpected anomalous {110} glide plane in two Pt submicrometer crystals grown by very different processes and having very different morphologies. The structure of the defects (type, associated glide plane, and lattice displacement) is imaged in these faceted Pt crystals. Using this noninvasive technique, both plasticity and unusual defect behavior can be probed at the nanoscale.

9.
Materials (Basel) ; 15(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36143513

RESUMO

The microstructure of a sub-micrometric gold crystal during nanoindentation is visualized by in situ multi-wavelength Bragg coherent X-ray diffraction imaging. The gold crystal is indented using a custom-built atomic force microscope. A band of deformation attributed to a shear band oriented along the (221) lattice plane is nucleated at the lower left corner of the crystal and propagates towards the crystal center with increasing applied mechanical load. After complete unloading, an almost strain-free and defect-free crystal is left behind, demonstrating a pseudo-elastic behavior that can only be studied by in situ imaging while it is invisible to ex situ examinations. The recovery is probably associated with reversible dislocations nucleation/annihilation at the side surface of the particle and at the particle-substrate interface, a behavior that has been predicted by atomistic simulations. The full recovery of the particle upon unloading sheds new light on extraordinary mechanical properties of metal nanoparticles obtained by solid-state dewetting.

10.
J Appl Crystallogr ; 55(Pt 4): 1045-1054, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35974722

RESUMO

Bragg coherent X-ray diffraction is a nondestructive method for probing material structure in three dimensions at the nanoscale, with unprecedented resolution in displacement and strain fields. This work presents Gwaihir, a user-friendly and open-source tool to process and analyze Bragg coherent X-ray diffraction data. It integrates the functionalities of the existing packages bcdi and PyNX in the same toolbox, creating a natural workflow and promoting data reproducibility. Its graphical interface, based on Jupyter Notebook widgets, combines an interactive approach for data analysis with a powerful environment designed to link large-scale facilities and scientists.

11.
Nat Commun ; 13(1): 3003, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637233

RESUMO

Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields.

12.
Nanomaterials (Basel) ; 12(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458070

RESUMO

The quantification and localization of elastic strains and defects in crystals are necessary to control and predict the functioning of materials. The X-ray imaging of strains has made very impressive progress in recent years. On the one hand, progress in optical elements for focusing X-rays now makes it possible to carry out X-ray diffraction mapping with a resolution in the 50-100 nm range, while lensless imaging techniques reach a typical resolution of 5-10 nm. This continuous evolution is also a consequence of the development of new two-dimensional detectors with hybrid pixels whose dynamics, reading speed and low noise level have revolutionized measurement strategies. In addition, a new accelerator ring concept (HMBA network: hybrid multi-bend achromat lattice) is allowing a very significant increase (a factor of 100) in the brilliance and coherent flux of synchrotron radiation facilities, thanks to the reduction in the horizontal size of the source. This review is intended as a progress report in a rapidly evolving field. The next ten years should allow the emergence of three-dimensional imaging methods of strains that are fast enough to follow, in situ, the evolution of a material under stress or during a transition. Handling massive amounts of data will not be the least of the challenges.

13.
Nat Commun ; 12(1): 5385, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508094

RESUMO

At the nanoscale, elastic strain and crystal defects largely influence the properties and functionalities of materials. The ability to predict the structural evolution of catalytic nanocrystals during the reaction is of primary importance for catalyst design. However, to date, imaging and characterising the structure of defects inside a nanocrystal in three-dimensions and in situ during reaction has remained a challenge. We report here an unusual twin boundary migration process in a single platinum nanoparticle during CO oxidation using Bragg coherent diffraction imaging as the characterisation tool. Density functional theory calculations show that twin migration can be correlated with the relative change in the interfacial energies of the free surfaces exposed to CO. The x-ray technique also reveals particle reshaping during the reaction. In situ and non-invasive structural characterisation of defects during reaction opens new avenues for understanding defect behaviour in confined crystals and paves the way for strain and defect engineering.

14.
Small ; 17(18): e2007702, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738928

RESUMO

Studying model nanoparticles is one approach to better understand the structural evolution of a catalyst during reactions. These nanoparticles feature well-defined faceting, offering the possibility to extract structural information as a function of facet orientation and compare it to theoretical simulations. Using Bragg Coherent X-ray Diffraction Imaging, the uniformity of electrochemically synthesized model catalysts is studied, here high-index faceted tetrahexahedral (THH) platinum nanoparticles at ambient conditions. 3D images of an individual nanoparticle are obtained, assessing not only its shape but also the specific components of the displacement and strain fields both at the surface of the nanocrystal and inside. The study reveals structural diversity of shapes and defects, and shows that the THH platinum nanoparticles present strain build-up close to facets and edges. A facet recognition algorithm is further applied to the imaged nanoparticles and provides facet-dependent structural information for all measured nanoparticles. In the context of strain engineering for model catalysts, this study provides insight into the shape-controlled synthesis of platinum nanoparticles with high-index facets.

16.
Sci Adv ; 6(40)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33008906

RESUMO

Spin electronic devices based on crystalline oxide layers with nanoscale thicknesses involve complex structural and magnetic phenomena, including magnetic domains and the coupling of the magnetism to elastic and plastic crystallographic distortion. The magnetism of buried nanoscale layers has a substantial impact on spincaloritronic devices incorporating garnets and other oxides exhibiting the spin Seebeck effect (SSE). Synchrotron hard x-ray nanobeam diffraction techniques combine structural, elemental, and magnetic sensitivity and allow the magnetic domain configuration and structural distortion to be probed in buried layers simultaneously. Resonant scattering at the Gd L2 edge of Gd3Fe5O12 layers yields magnetic contrast with both linear and circular incident x-ray polarization. Domain patterns facet to form low-energy domain wall orientations but also are coupled to elastic features linked to epitaxial growth. Nanobeam magnetic diffraction images reveal diverse magnetic microstructure within emerging SSE materials and a strong coupling of the magnetism to crystallographic distortion.

17.
ACS Nano ; 14(8): 10305-10312, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806035

RESUMO

Gallium nitride (GaN) is of technological importance for a wide variety of optoelectronic applications. Defects in GaN, like inversion domain boundaries (IDBs), significantly affect the electrical and optical properties of the material. We report, here, on the structural configurations of planar inversion domain boundaries inside n-doped GaN wires measured by Bragg coherent X-ray diffraction imaging. Different complex domain configurations are revealed along the wires with a 9 nm in-plane spatial resolution. We demonstrate that the IDBs change their direction of propagation along the wires, promoting Ga-terminated domains and stabilizing into {11̅00}, that is, m-planes. The atomic phase shift between the Ga- and N-terminated domains was extracted using phase-retrieval algorithms, revealing an evolution of the out-of-plane displacement (∼5 pm, at maximum) between inversion domains along the wires. This work provides an accurate inner view of planar defects inside small crystals.

18.
Sci Rep ; 10(1): 12760, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728084

RESUMO

We explore the use of continuous scanning during data acquisition for Bragg coherent diffraction imaging, i.e., where the sample is in continuous motion. The fidelity of continuous scanning Bragg coherent diffraction imaging is demonstrated on a single Pt nanoparticle in a flow reactor at [Formula: see text] in an Ar-based gas flowed at 50 ml/min. We show a reduction of 30% in total scan time compared to conventional step-by-step scanning. The reconstructed Bragg electron density, phase, displacement and strain fields are in excellent agreement with the results obtained from conventional step-by-step scanning. Continuous scanning will allow to minimise sample instability under the beam and will become increasingly important at diffraction-limited storage ring light sources.

19.
Nanomaterials (Basel) ; 10(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604948

RESUMO

Phase change materials are attractive materials for non-volatile memories because of their ability to switch reversibly between an amorphous and a crystal phase. The volume change upon crystallization induces mechanical stress that needs to be understood and controlled. In this work, we monitor stress evolution during crystallization in thin GeTe films capped with SiOx, using optical curvature measurements. A 150 MPa tensile stress buildup is measured when the 100 nm thick film crystallizes. Stress evolution is a result of viscosity increase with time and a tentative model is proposed that renders qualitatively the observed features.

20.
Small ; 16(6): e1905990, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31962006

RESUMO

Compression of micropillars is followed in situ by a quick nanofocused X-ray scanning microscopy technique combined with 3D reciprocal space mapping. Compared to other attempts using X-ray nanobeams, it avoids any motion or vibration that would lead to a destruction of the sample. The technique consists of scanning both the energy of the incident nanofocused X-ray beam and the in-plane translations of the focusing optics along the X-ray beam. Here, the approach by imaging the strain and lattice orientation of Si micropillars and their pedestals during in situ compression is demonstrated. Varying the energy of the incident beam instead of rocking the sample and mapping the focusing optics instead of moving the sample supplies a vibration-free measurement of the reciprocal space maps without removal of the mechanical load. The maps of strain and lattice orientation are in good agreement with the ones recorded by ordinary rocking-curve scans. Variable-wavelength quick scanning X-ray microscopy opens the route for in situ strain and tilt mapping toward more diverse and complex materials environments, especially where sample manipulation is difficult.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA