Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Science ; 383(6683): 634-639, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330133

RESUMO

The interface between two different materials can show unexpected quantum phenomena. In this study, we used molecular beam epitaxy to synthesize heterostructures formed by stacking together two magnetic materials, a ferromagnetic topological insulator (TI) and an antiferromagnetic iron chalcogenide (FeTe). We observed emergent interface-induced superconductivity in these heterostructures and demonstrated the co-occurrence of superconductivity, ferromagnetism, and topological band structure in the magnetic TI layer-the three essential ingredients of chiral topological superconductivity (TSC). The unusual coexistence of ferromagnetism and superconductivity is accompanied by a high upper critical magnetic field that exceeds the Pauli paramagnetic limit for conventional superconductors at low temperatures. These magnetic TI/FeTe heterostructures with robust superconductivity and atomically sharp interfaces provide an ideal wafer-scale platform for the exploration of chiral TSC and Majorana physics.

2.
Sci Adv ; 9(50): eadi4540, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091392

RESUMO

We present measurements of thermally generated transverse spin currents in the topological insulator Bi2Se3, thereby completing measurements of interconversions among the full triad of thermal gradients, charge currents, and spin currents. We accomplish this by comparing the spin Nernst magneto-thermopower to the spin Hall magnetoresistance for bilayers of Bi2Se3/CoFeB. We find that Bi2Se3 does generate substantial thermally driven spin currents. A lower bound for the ratio of spin current density to thermal gradient is [Formula: see text] = (4.9 ± 0.9) × 106 [Formula: see text], and a lower bound for the magnitude of the spin Nernst ratio is -0.61 ± 0.11. The spin Nernst ratio for Bi2Se3 is the largest among all materials measured to date, two to three times larger compared to previous measurements for the heavy metals Pt and W. Strong thermally generated spin currents in Bi2Se3 can be understood via Mott relations to be due to an overall large spin Hall conductivity and its dependence on electron energy.

3.
Nat Commun ; 14(1): 7119, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932274

RESUMO

Over the last decade, the possibility of realizing topological superconductivity (TSC) has generated much excitement. TSC can be created in electronic systems where the topological and superconducting orders coexist, motivating the continued exploration of candidate material platforms to this end. Here, we use molecular beam epitaxy (MBE) to synthesize heterostructures that host emergent interfacial superconductivity when a non-superconducting antiferromagnet (FeTe) is interfaced with a topological insulator (TI) (Bi, Sb)2Te3. By performing in-vacuo angle-resolved photoemission spectroscopy (ARPES) and ex-situ electrical transport measurements, we find that the superconducting transition temperature and the upper critical magnetic field are suppressed when the chemical potential approaches the Dirac point. We provide evidence to show that the observed interfacial superconductivity and its chemical potential dependence is the result of the competition between the Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling mediated by Dirac surface states and antiferromagnetic exchange couplings that generate the bicollinear antiferromagnetic order in the FeTe layer.

4.
Nat Mater ; 22(9): 1100-1105, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37537357

RESUMO

A quantum anomalous Hall (QAH) insulator is characterized by quantized Hall and vanishing longitudinal resistances at zero magnetic field that are protected against local perturbations and independent of sample details. This insensitivity makes the microscopic details of the local current distribution inaccessible to global transport measurements. Accordingly, the current distributions that give rise to transport quantization are unknown. Here we use magnetic imaging to directly visualize the transport current in the QAH regime. As we tune through the QAH plateau by electrostatic gating, we clearly identify a regime in which the sample transports current primarily in the bulk rather than along the edges. Furthermore, we image the local response of equilibrium magnetization to electrostatic gating. Combined, these measurements suggest that the current flows through incompressible regions whose spatial structure can change throughout the QAH regime. Identification of the appropriate microscopic picture of electronic transport in QAH insulators and other topologically non-trivial states of matter is a crucial step towards realizing their potential in next-generation quantum devices.

5.
Nat Mater ; 21(12): 1366-1372, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36302957

RESUMO

A topological insulator (TI) interfaced with an s-wave superconductor has been predicted to host topological superconductivity. Although the growth of epitaxial TI films on s-wave superconductors has been achieved by molecular-beam epitaxy, it remains an outstanding challenge for synthesizing atomically thin TI/superconductor heterostructures, which are critical for engineering the topological superconducting phase. Here we used molecular-beam epitaxy to grow Bi2Se3 films with a controlled thickness on monolayer NbSe2 and performed in situ angle-resolved photoemission spectroscopy and ex situ magnetotransport measurements on these heterostructures. We found that the emergence of Rashba-type bulk quantum-well bands and spin-non-degenerate surface states coincides with a marked suppression of the in-plane upper critical magnetic field of the superconductivity in Bi2Se3/monolayer NbSe2 heterostructures. This is a signature of a crossover from Ising- to Rashba-type superconducting pairings, induced by altering the Bi2Se3 film thickness. Our work opens a route for exploring a robust topological superconducting phase in TI/Ising superconductor heterostructures.

6.
Nat Commun ; 13(1): 2972, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624122

RESUMO

The rapid discovery of two-dimensional (2D) van der Waals (vdW) quantum materials has led to heterostructures that integrate diverse quantum functionalities such as topological phases, magnetism, and superconductivity. In this context, the epitaxial synthesis of vdW heterostructures with well-controlled interfaces is an attractive route towards wafer-scale platforms for systematically exploring fundamental properties and fashioning proof-of-concept devices. Here, we use molecular beam epitaxy to synthesize a vdW heterostructure that interfaces two material systems of contemporary interest: a 2D ferromagnet (1T-CrTe2) and a topological semimetal (ZrTe2). We find that one unit-cell (u.c.) thick 1T-CrTe2 grown epitaxially on ZrTe2 is a 2D ferromagnet with a clear anomalous Hall effect. In thicker samples (12 u.c. thick CrTe2), the anomalous Hall effect has characteristics that may arise from real-space Berry curvature. Finally, in ultrathin CrTe2 (3 u.c. thickness), we demonstrate current-driven magnetization switching in a full vdW topological semimetal/2D ferromagnet heterostructure device.

7.
Phys Rev Lett ; 125(1): 017204, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678653

RESUMO

We report the modification of magnetism in a magnetic insulator Y_{3}Fe_{5}O_{12} thin film by topological surface states (TSS) in an adjacent topological insulator Bi_{2}Se_{3} thin film. Ferromagnetic resonance measurements show that the TSS in Bi_{2}Se_{3} produces a perpendicular magnetic anisotropy, results in a decrease in the gyromagnetic ratio, and enhances the damping in Y_{3}Fe_{5}O_{12}. Such TSS-induced changes become more pronounced as the temperature decreases from 300 to 50 K. These results suggest a completely new approach for control of magnetism in magnetic thin films.

8.
Nat Commun ; 8(1): 1037, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051541

RESUMO

Circularly polarized photons are known to generate a directional helicity-dependent photocurrent in three-dimensional topological insulators at room temperature. Surprisingly, the phenomenon is readily observed at photon energies that excite electrons to states far above the spin-momentum locked Dirac cone and the underlying mechanism for the helicity-dependent photocurrent is still not understood. Here we show a comprehensive study of the helicity-dependent photocurrent in (Bi1-x Sb x )2Te3 thin films as a function of the incidence angle of the optical excitation, its wavelength and the gate-tuned chemical potential. Our observations allow us to unambiguously identify the circular photo-galvanic effect as the dominant mechanism for the helicity-dependent photocurrent. Additionally, we use an analytical model to relate the directional nature of the photocurrent to asymmetric optical transitions between the topological surface states and bulk bands. The insights we obtain are important for engineering opto-spintronic devices that rely on optical steering of spin and charge currents.

9.
Proc Natl Acad Sci U S A ; 114(39): 10379-10383, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28900003

RESUMO

Many proposed experiments involving topological insulators (TIs) require spatial control over time-reversal symmetry and chemical potential. We demonstrate reconfigurable micron-scale optical control of both magnetization (which breaks time-reversal symmetry) and chemical potential in ferromagnetic thin films of Cr-(Bi,Sb)2Te3 grown on SrTiO3 By optically modulating the coercivity of the films, we write and erase arbitrary patterns in their remanent magnetization, which we then image with Kerr microscopy. Additionally, by optically manipulating a space charge layer in the underlying SrTiO3 substrates, we control the local chemical potential of the films. This optical gating effect allows us to write and erase p-n junctions in the films, which we study with photocurrent microscopy. Both effects are persistent and may be patterned and imaged independently on a few-micron scale. Dynamic optical control over both magnetization and chemical potential of a TI may be useful in efforts to understand and control the edge states predicted at magnetic domain walls in quantum anomalous Hall insulators.

10.
Sci Rep ; 7(1): 7631, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794508

RESUMO

Proximity-effect-induced superconductivity was studied in epitaxial topological insulator Bi2Se3 thin films grown on superconducting NbSe2 single crystals. A point contact spectroscopy (PCS) method was used at low temperatures down to 40 mK. An induced superconducting gap in Bi2Se3 was observed in the spectra, which decreased with increasing Bi2Se3 layer thickness, consistent with the proximity effect in the bulk states of Bi2Se3 induced by NbSe2. At very low temperatures, an extra point contact feature which may correspond to a second energy gap appeared in the spectrum. For a 16 quintuple layer Bi2Se3 on NbSe2 sample, the bulk state gap value near the top surface is ~159 µeV, while the second gap value is ~120 µeV at 40 mK. The second gap value decreased with increasing Bi2Se3 layer thickness, but the ratio between the second gap and the bulk state gap remained about the same for different Bi2Se3 thicknesses. It is plausible that this is due to superconductivity in Bi2Se3 topological surface states induced through the bulk states. The two induced gaps in the PCS measurement are consistent with the three-dimensional bulk state and the two-dimensional surface state superconducting gaps observed in the angle-resolved photoemission spectroscopy (ARPES) measurement.

11.
Nano Lett ; 17(2): 980-984, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28030948

RESUMO

Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb)2Te3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. The FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way for observing many exotic quantum phenomena in topological insulators.

12.
Sci Adv ; 2(7): e1600167, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27482539

RESUMO

A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T 1 ~ 70 mK and T 2 ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample.


Assuntos
Imãs , Teoria Quântica , Semicondutores , Temperatura
13.
Phys Rev Lett ; 117(7): 076601, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563980

RESUMO

We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films-Bi_{2}Se_{3} and (Bi,Sb)_{2}Te_{3}-deposited by molecular beam epitaxy on Y_{3}Fe_{5}O_{12} thin films. By systematically varying the Bi_{2}Se_{3} film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (λ_{IREE}), increases dramatically as the film thickness is increased from two quintuple layers, saturating above six quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological-insulator-ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of Y_{3}Fe_{5}O_{12}/(Bi,Sb)_{2}Te_{3} heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and λ_{IREE}.

14.
Sci Adv ; 1(10): e1500740, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26601138

RESUMO

Quantized Hall conductance is a generic feature of two-dimensional electronic systems with broken time reversal symmetry. In the quantum anomalous Hall state recently discovered in magnetic topological insulators, time reversal symmetry is believed to be broken by long-range ferromagnetic order, with quantized resistance observed even at zero external magnetic field. We use scanning nanoSQUID (nano-superconducting quantum interference device) magnetic imaging to provide a direct visualization of the dynamics of the quantum phase transition between the two anomalous Hall plateaus in a Cr-doped (Bi,Sb)2Te3 thin film. Contrary to naive expectations based on macroscopic magnetometry, our measurements reveal a superparamagnetic state formed by weakly interacting magnetic domains with a characteristic size of a few tens of nanometers. The magnetic phase transition occurs through random reversals of these local moments, which drive the electronic Hall plateau transition. Surprisingly, we find that the electronic system can, in turn, drive the dynamics of the magnetic system, revealing a subtle interplay between the two coupled quantum phase transitions.

15.
Sci Adv ; 1(9): e1500640, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26601300

RESUMO

The spin-polarized surface states of topological insulators (TIs) are attractive for applications in spintronics and quantum computing. A central challenge with these materials is to reliably tune the chemical potential of their electrons with respect to the Dirac point and the bulk bands. We demonstrate persistent, bidirectional optical control of the chemical potential of (Bi,Sb)2Te3 thin films grown on SrTiO3. By optically modulating a space-charge layer in the SrTiO3 substrates, we induce a persistent field effect in the TI films comparable to electrostatic gating techniques but without additional materials or processing. This enables us to optically pattern arbitrarily shaped p- and n-type regions in a TI, which we subsequently image with scanning photocurrent microscopy. The ability to optically write and erase mesoscopic electronic structures in a TI may aid in the investigation of the unique properties of the topological insulating phase. The gating effect also generalizes to other thin-film materials, suggesting that these phenomena could provide optical control of chemical potential in a wide range of ultrathin electronic systems.

16.
Nat Commun ; 6: 7434, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26151318

RESUMO

When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, distinct from the traditionally studied quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt-driven crossover from predominantly edge-state transport to diffusive transport in Crx(Bi,Sb)(2-x)Te3 thin films. This crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain by employing a Landauer-Büttiker formalism. Our methodology provides a powerful means of quantifying dissipative effects in temperature and chemical potential regimes far from perfect quantization.

17.
Nat Commun ; 5: 3841, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24815418

RESUMO

Understanding the spin-texture behaviour of boundary modes in ultrathin topological insulator films is critically essential for the design and fabrication of functional nanodevices. Here, by using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films, we report tunnelling-dependent evolution of spin configuration in topological insulator thin films across the metal-to-insulator transition. We report a systematic binding energy- and wavevector-dependent spin polarization for the topological surface electrons in the ultrathin gapped-Dirac-cone limit. The polarization decreases significantly with enhanced tunnelling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. We present a theoretical model that captures this delicate relationship between quantum tunnelling and Fermi surface spin polarization. Our high-resolution spin-based spectroscopic results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nanodevice.

18.
Nano Lett ; 13(6): 2471-6, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23642037

RESUMO

Periodic Aharonov­Bohm and Altshuler­Aronov­Spivak oscillations have traditionally been observed in lateral transport through patterned mesoscopic loops of diffusive conductors. However, our studies of perpendicular-to-plane magnetotransport in straight-channel, diffusive devices of epitaxial Bi2Se3 surprisingly reveal signatures of Aharonov­Bohm orbits, periodic conductance fluctuation magneto-fingerprints, even though the devices are not explicitly patterned into loops. We show that the length scale of these orbits corresponds to the typical perimeter of triangular terraces found on the surface of these thin film devices, strongly suggesting that the periodic magneto-fingerprint arises from coherent scattering of electron waves from the step-edges. Our interpretation is bolstered by control measurements in devices without such surface morphology that only show a conventional, aperiodic magneto-fingerprint. These results show that lithographically patterned Bi2Se3 devices provide a novel class of mesoscopic physical systems for systematic studies of coherent surface sensitive transport.

19.
Science ; 327(5966): 665-9, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20133566

RESUMO

Electronic states in disordered conductors on the verge of localization are predicted to exhibit critical spatial characteristics indicative of the proximity to a metal-insulator phase transition. We used scanning tunneling microscopy to visualize electronic states in Ga(1-x)Mn(x)As samples close to this transition. Our measurements show that doping-induced disorder produces strong spatial variations in the local tunneling conductance across a wide range of energies. Near the Fermi energy, where spectroscopic signatures of electron-electron interaction are the most prominent, the electronic states exhibit a diverging spatial correlation length. Power-law decay of the spatial correlations is accompanied by log-normal distributions of the local density of states and multifractal spatial characteristics.

20.
Nature ; 460(7259): 1106-9, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19668187

RESUMO

Topological insulators are a new class of insulators in which a bulk gap for electronic excitations is generated because of the strong spin-orbit coupling inherent to these systems. These materials are distinguished from ordinary insulators by the presence of gapless metallic surface states, resembling chiral edge modes in quantum Hall systems, but with unconventional spin textures. A key predicted feature of such spin-textured boundary states is their insensitivity to spin-independent scattering, which is thought to protect them from backscattering and localization. Recently, experimental and theoretical efforts have provided strong evidence for the existence of both two- and three-dimensional classes of such topological insulator materials in semiconductor quantum well structures and several bismuth-based compounds, but so far experiments have not probed the sensitivity of these chiral states to scattering. Here we use scanning tunnelling spectroscopy and angle-resolved photoemission spectroscopy to visualize the gapless surface states in the three-dimensional topological insulator Bi(1-x)Sb(x), and examine in detail the influence of scattering from disorder caused by random alloying in this compound. We show that, despite strong atomic scale disorder, backscattering between states of opposite momentum and opposite spin is absent. Our observations demonstrate that the chiral nature of these states protects the spin of the carriers. These chiral states are therefore potentially useful for spin-based electronics, in which long spin coherence is critical, and also for quantum computing applications, where topological protection can enable fault-tolerant information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA