Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dis Aquat Organ ; 133(2): 127-139, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31019137

RESUMO

Recent findings have suggested that eastern oyster plasma possesses inhibitors of the protease subtilisin, which play a role in the host defense against Perkinsus marinus, a protist parasite causing dermo. A study was conducted to determine whether plasma subtilisin inhibitory activity (PSIA) could be used as a selective marker in breeding programs for dermo resistance. Eastern oysters Crassostrea virginica from 2 wild Louisiana populations shown to differ in dermo resistance were collected and their PSIA was measured. Three groups of oysters were established to spawn from each population. One group was composed of randomly sampled oysters (i.e. unselected) and the other 2 groups were composed of oysters with the highest or lowest PSIA. After spawning, progenies were deployed in October 2014 in a dermo endemic area and sampled quarterly for 2 yr to measure their mortality, growth, P. marinus infection intensity, condition index, PSIA, and the gene expression of 3 subtilisin inhibitors (cvSI-1, cvSI-2, and cvSI-3). Oyster cumulative mortalities of the progenies of all groups increased both years from April to October, concomitant with increasing P. marinus infection intensities. Mortalities and P. marinus infection intensities differed markedly between the 2 populations, but differences between the unselected and selected groups of each population were limited. Measurements of PSIA and cvSI-1, cvSI-2, and cvSI-3 gene expressions between the progenies of all groups showed few differences. CvSI-1 gene expression in surviving oysters of the most susceptible population was increased at the end of the study, adding additional support to the potential role of cvSI-1 defense against P. marinus.


Assuntos
Apicomplexa , Crassostrea , Animais , Louisiana , Subtilisinas
2.
Sci Total Environ ; 628-629: 1-10, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29432924

RESUMO

Dicloran is a commonly used fungicide throughout the Southern and Western United States. Runoff of dicloran from agriculture systems to nearby waterbodies can accumulate in the organisms that inhabit those areas. Although severe damage of dicloran to ecological systems has not been reported, its toxicity has been modified by photodegradation. The objective of this study is to assess the changes of dicloran toxicities during photo exposure using a reliable in vitro biological model. In the present investigation, the photodegradation of dicloran in vitro showed over 90% of dicloran was degraded within 24h of UV exposure in water. Two major intermediate degradation products, 2-chloro-1,4-benzoquinone (CBQ) and 1,4-benzoquinone (BQ), were detected upon UV exposure of dicloran; however, they were rapidly degraded via photolysis. To estimate the impact of the phototoxicity of dicloran to aquatic organisms, we developed an in vitro cell culture system using the C. virginica cardiomyoctes (CvCMs) which were isolated from heart tissues and formed beating cell clusters. The CvCM clusters were treated with irradiated dicloran or the two intermediate standards, CBQ and BQ, and they showed up to 41% decrease in beating rates compared to control cell clusters. Expression levels of selected genes: def, hsp70, and cam, were upregulated in response to stimulations of UV irradiated dicloran and the two standard intermediates. The four-hour irradiated dicloran also resulted in more significant inhibition in the proliferation and small cardioactive peptide ß production of CvCMs than other treatment. Tested solutions of photolyzed dicloran showed elevated toxicities opposed to the standard intermediates, CBQ and BQ, suggesting additive toxicity of these dicloran products or toxicity due to other unidentified degradation products. Results of this study supported our hypothesis that the degradation of dicloran caused by photo irradiation results in an elevated toxicity which can be evaluated by the in vitro CvCM model.


Assuntos
Compostos de Anilina/toxicidade , Crassostrea/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Miócitos Cardíacos/efeitos dos fármacos , Processos Fotoquímicos , Fotólise , Raios Ultravioleta
3.
Int J Oncol ; 52(1): 252-260, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29115578

RESUMO

Early diagnosis of prostate cancer (PCa) is critical for the application of efficient treatment to PCa patients. However, the majority of PCas remains indolent from several months to several years before malignancy. Current diagnosis methods have limitations in their reliability and are inefficient in time cost. Thus, an efficient in vivo PCa cell xenograft model is highly desired for diagnostic studies in PCas. In the present study we present a standardized procedure to create a PCa cell xenograft model using zebrafish (Danio rerio) as the host. PC3-CTR cells, a cell line from adenocarcinoma with stable expression of calcitonin receptor (CRT), were subcutaneously injected into zebrafish larvae at 48 h post fertilization. The nursing conditions for the larvae were optimized with stable survival rates of post hatch and post PC3-CTR cell injection. In this system, the progression of PC3-CTR cells in vivo was evaluated by migration and proliferation of the cells. Massive migrations of PC3 cells in vivo were observed at post injection day (PID)3. The injected PC3-CTR cells eventually invaded the whole larval zebrafish at PID5. Quantification of PC3-CTR cell proliferation was done using quantitative PCR (qPCR) analysis targeting the expression profiles of two PCa housekeeping genes, TATA-binding protein (TBP) and hypoxanthine phosphoribosyltransferase 1 (HPRT1) encoding genes. The excessive proliferation of PC3 cells in vivo was detected with both qPCR assays. Expression levels of one non­coding gene, prostate cancer associated 3 gene (pca3), and two other genes encoding transient receptor potential ion channel Melastatin 8 (trpm8) and prostate-specific membrane antigen (psma), showed a significantly enhanced aggressiveness of PC3-CTR cells in vivo. The model established in the present study provides an improved in vivo model for the diagnosis of PCas efficiently. This PCa cell xenograft model can also serve as a tool for high throughput anti-PCa drug screening in therapeutic treatments.


Assuntos
Modelos Animais de Doenças , Neoplasias da Próstata/patologia , Peixe-Zebra/embriologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Progressão da Doença , Xenoenxertos , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA