Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 10(8)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36016202

RESUMO

Notwithstanding the current SARS-CoV-2 pandemic, influenza virus infection still represents a global health concern in terms of hospitalizations and possible pandemic threats. The objective of next-generation influenza vaccines is not only to increase the breadth of response but also to improve the elicitation of an effective and robust immune response, especially in high-risk populations. To achieve this second objective, the administration of adjuvanted influenza vaccines has been considered. In this regard, the monitoring and characterization of the antibody response associated with the administration of adjuvanted vaccines has been evaluated in this study in order to shed light on the kinetic, magnitude and subclass usage of antibody secreting cells (ASCs) as well as of circulating antigen-specific serum antibodies. Specifically, we utilized the DBA/2J mouse model to assess the kinetic, magnitude and IgG subclass usage of the antibody response following an intramuscular (IM) or intraperitoneal (IP) immunization regimen with AddaVax-adjuvanted bivalent H1N1 and H3N2 computationally optimized broadly reactive antigen (COBRA) influenza recombinant hemagglutinins (rHAs). While the serological evaluation revealed a homogeneous kinetic of the antibody response, the detection of the ASCs through a FluoroSpot platform revealed a different magnitude, subclass usage and kinetic of the antigen-specific IgG secreting cells peaking at day 5 and day 9 following the IP and IM immunization, respectively.

2.
J Virol ; 95(23): e0237920, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523961

RESUMO

Influenza remains one of the most contagious infectious diseases. Approximately, 25 to 50 million people suffer from influenza-like illness in the United States annually, leading to almost 1 million hospitalizations. Globally, the World Health Organization (WHO) estimates 250,000 to 500,000 mortalities associated with secondary respiratory complications due to influenza virus infection every year. Currently, seasonal vaccination represents the best countermeasure to prevent influenza virus spread and transmission in the general population. However, presently licensed influenza vaccines are about 60% effective on average, and their effectiveness varies from season to season and among age groups, as well as between different influenza subtypes within a single season. The hemagglutination inhibition (HAI) assay represents the gold standard method for measuring the functional antibody response elicited following standard-of-care vaccination, along with evaluating the efficacy of under-development influenza vaccines in both animal models and clinical trial settings. However, using the classical HAI approach, it is not possible to dissect the complexities of variable epitope recognition within a polyclonal antibody response. In this paper, we describe a straightforward competitive HAI-based method using a combination of influenza virus and recombinant hemagglutinin (HA) proteins to dissect the HAI functional activity of HA-specific antibody populations in a single assay format. IMPORTANCE The hemagglutination inhibition (HAI) assay is a well-established and reproducible method that quantifies functional antibody activity against influenza viruses and, in particular, the capability of an antibody formulation to inhibit the binding of hemagglutinin (HA) to sialic acid. However, the HAI assay does not provide full insights on the breadth and epitope recognition of the antibody formulation, especially in the context of polyclonal sera, where multiple antibody specificities contribute to the overall observed functional activity. In this report we introduce the use of Y98F point-mutated recombinant HA (HAΔSA) proteins, which lack sialic acid binding activity, in the context of the HAI assay as a means to absorb out certain HA-directed (i.e., strain-specific or cross-reactive) antibody populations. This modification to the classical HAI assay, referred to as the competitive HAI assay, represents a new tool to dissect the magnitude and breadth of polyclonal antibodies elicited through vaccination or natural infection.


Assuntos
Anticorpos Antivirais/imunologia , Testes de Inibição da Hemaglutinação/métodos , Influenza Humana/diagnóstico , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Reações Cruzadas , Modelos Animais de Doenças , Epitopos , Furões/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Vacinação
3.
Macromol Rapid Commun ; 40(2): e1800314, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29999558

RESUMO

Heparin plays a significant role in wound healing and tissue regeneration applications, through stabilization of fibroblast growth factors (FGF). Risks associated with batch-to-batch variability and contamination from its biological sources have led to the development of synthetic, highly sulfonated polymers as promising heparin mimics. In this work, a systematic study of an aqueous polymerization-induced self-assembly (PISA) of styrene from poly(2-acrylamido-2-methylpropane sodium sulfonate) (P(AMPS)) macro reversible addition-fragmentation chain transfer (macro-RAFT) agents produced a variety of spherical heparin-mimicking nanoparticles, which were further characterized with light scattering and electron microscopy techniques. None of the nanoparticles tested showed toxicity against mammalian cells; however, significant hemolytic activity was observed. Nonetheless, the heparin-mimicking nanoparticles outperformed both heparin and linear P(AMPS) in cellular proliferation assays, suggesting increased bFGF stabilization efficiencies, possibly due to the high density of sulfonated moieties at the particle surface.


Assuntos
Técnicas de Química Sintética/métodos , Heparina/química , Nanopartículas/química , Polimerização , Polímeros/química , Ácidos Sulfônicos/química , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Difusão Dinâmica da Luz , Hemólise/efeitos dos fármacos , Heparina/síntese química , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Químicos , Estrutura Molecular , Células NIH 3T3 , Nanopartículas/ultraestrutura , Polímeros/síntese química , Estireno/química , Ácidos Sulfônicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA