Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(7): 107012, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37360690

RESUMO

Congenital heart defects (CHDs) are frequent in children with Down syndrome (DS), caused by trisomy of chromosome 21. However, the underlying mechanisms are poorly understood. Here, using a human-induced pluripotent stem cell (iPSC)-based model and the Dp(16)1Yey/+ (Dp16) mouse model of DS, we identified downregulation of canonical Wnt signaling downstream of increased dosage of interferon (IFN) receptors (IFNRs) genes on chromosome 21 as a causative factor of cardiogenic dysregulation in DS. We differentiated human iPSCs derived from individuals with DS and CHDs, and healthy euploid controls into cardiac cells. We observed that T21 upregulates IFN signaling, downregulates the canonical WNT pathway, and impairs cardiac differentiation. Furthermore, genetic and pharmacological normalization of IFN signaling restored canonical WNT signaling and rescued defects in cardiogenesis in DS in vitro and in vivo. Our findings provide insights into mechanisms underlying abnormal cardiogenesis in DS, ultimately aiding the development of therapeutic strategies.

2.
Circulation ; 146(9): 699-714, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862102

RESUMO

BACKGROUND: Abnormalities in Ca2+ homeostasis are associated with cardiac arrhythmias and heart failure. Triadin plays an important role in Ca2+ homeostasis in cardiomyocytes. Alternative splicing of a single triadin gene produces multiple triadin isoforms. The cardiac-predominant isoform, mouse MT-1 or human Trisk32, is encoded by triadin exons 1 to 8. In humans, mutations in the triadin gene that lead to a reduction in Trisk32 levels in the heart can cause cardiac dysfunction and arrhythmias. Decreased levels of Trisk32 in the heart are also common in patients with heart failure. However, mechanisms that maintain triadin isoform composition in the heart remain elusive. METHODS: We analyzed triadin expression in heart explants from patients with heart failure and cardiac arrhythmias and in hearts from mice carrying a knockout allele for Trdn-as, a cardiomyocyte-specific long noncoding RNA encoded by the antisense strand of the triadin gene, between exons 9 and 11. Catecholamine challenge with isoproterenol was performed on Trdn-as knockout mice to assess the role of Trdn-as in cardiac arrhythmogenesis, as assessed by ECG. Ca2+ transients in adult mouse cardiomyocytes were measured with the IonOptix platform or the GCaMP system. Biochemistry assays, single-molecule fluorescence in situ hybridization, subcellular localization imaging, RNA sequencing, and molecular rescue assays were used to investigate the mechanisms by which Trdn-as regulates cardiac function and triadin levels in the heart. RESULTS: We report that Trdn-as maintains cardiac function, at least in part, by regulating alternative splicing of the triadin gene. Knockout of Trdn-as in mice downregulates cardiac triadin, impairs Ca2+ handling, and causes premature death. Trdn-as knockout mice are susceptible to cardiac arrhythmias in response to catecholamine challenge. Normalization of cardiac triadin levels in Trdn-as knockout cardiomyocytes is sufficient to restore Ca2+ handling. Last, Trdn-as colocalizes and interacts with serine/arginine splicing factors in cardiomyocyte nuclei and is essential for efficient recruitment of splicing factors to triadin precursor mRNA. CONCLUSIONS: These findings reveal regulation of alternative splicing as a novel mechanism by which a long noncoding RNA controls cardiac function. This study indicates potential therapeutics for heart disease by targeting the long noncoding RNA or pathways regulating alternative splicing.


Assuntos
Processamento Alternativo , Proteínas de Transporte , Insuficiência Cardíaca , Proteínas Musculares , RNA Longo não Codificante , Animais , Arritmias Cardíacas , Proteínas de Transporte/genética , Catecolaminas , Coração/fisiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Hibridização in Situ Fluorescente , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Longo não Codificante/genética
3.
J Mol Cell Cardiol ; 153: 44-59, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33359755

RESUMO

Direct reprogramming of fibroblasts into cardiomyocytes (CMs) represents a promising strategy to regenerate CMs lost after ischemic heart injury. Overexpression of GATA4, HAND2, MEF2C, TBX5, miR-1, and miR-133 (GHMT2m) along with transforming growth factor beta (TGF-ß) inhibition efficiently promote reprogramming. However, the mechanisms by which TGF-ß blockade promotes cardiac reprogramming remain unknown. Here, we identify interactions between the histone H3 lysine 27 trimethylation (H3K27me3) demethylase JMJD3, the SWI/SNF remodeling complex subunit BRG1, and cardiac transcription factors. Furthermore, canonical TGF-ß signaling regulates the interaction between GATA4 and JMJD3. TGF-ß activation impairs the ability of GATA4 to bind target genes and prevents demethylation of H3K27 at cardiac gene promoters during cardiac reprogramming. Finally, a mutation in GATA4 (V267M) that is associated with congenital heart disease exhibits reduced binding to JMJD3 and impairs cardiomyogenesis. Thus, we have identified an epigenetic mechanism wherein canonical TGF-ß pathway activation impairs cardiac gene programming, in part by interfering with GATA4-JMJD3 interactions.


Assuntos
Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/citologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Miócitos Cardíacos/citologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Metilação de DNA , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Histonas/química , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo
4.
Biochem Cell Biol ; 98(6): 631-646, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32706995

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating disease of the cardiopulmonary system caused by the narrowing of the pulmonary arteries, leading to increased vascular resistance and pressure. This leads to right ventricle remodeling, dysfunction, and eventually, death. While conventional therapies have largely focused on targeting vasodilation, other pathological features of PAH including aberrant inflammation, mitochondrial dynamics, cell proliferation, and migration have not been well explored. Thus, despite some recent improvements in PAH treatment, the life expectancy and quality of life for patients with PAH remains poor. Showing many similarities to cancers, PAH is characterized by increased pulmonary arterial smooth muscle cell proliferation, decreased apoptotic signaling pathways, and changes in metabolism. The recent successes of therapies targeting epigenetic modifiers for the treatment of cancer has prompted epigenetic research in PAH, revealing many new potential therapeutic targets. In this minireview we discuss the emergence of epigenetic dysregulation in PAH and highlight epigenetic-targeting compounds that may be effective for the treatment of PAH.


Assuntos
Epigênese Genética , Genoma Humano , Pulmão/metabolismo , Hipertensão Arterial Pulmonar , Artéria Pulmonar/metabolismo , Qualidade de Vida , Animais , Apoptose , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/terapia , Pulmão/patologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/terapia , Transdução de Sinais
5.
ACS Pharmacol Transl Sci ; 3(1): 21-28, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32259085

RESUMO

Alzheimer's disease (AD) is a debilitating neurodegenerative disorder affecting millions worldwide. Currently, there are only four approved treatments for AD, which improve symptoms modestly. AD is believed to be caused by the formation of intercellular plaques and intracellular tangles in the brain, but thus far all new drugs which target these pathologies have failed clinical trials. New research highlights the link between AD and Type II Diabetes (T2D), and some believe that AD is actually a brain specific form of it termed Type III Diabetes (T3D). Drugs which are currently approved for the treatment of T2D, such as metformin, have shown promising results in improving cognitive function and even preventing the development of AD in diabetic patients. Recent studies shed light on the relationship between the brain and cardiovascular system in which the brain and heart communicate with one another via the vasculature to regulate fluid and nutrient homeostasis. This line of research reveals how the brain-heart axis regulates hypertension and diabetes, both of which can impact cognitive function. In this review we survey past and ongoing research and clinical trials for AD, and argue that AD is a complex and systemic disorder which requires comprehensive approaches beyond the brain for effective prevention and/or treatment.

6.
Int J Mol Sci ; 21(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012649

RESUMO

The lysosome, a key organelle for cellular clearance, is associated with a wide variety of pathological conditions in humans. Lysosome function and its related pathways are particularly important for maintaining the health of the cardiovascular system. In this review, we highlighted studies that have improved our understanding of the connection between lysosome function and cardiovascular diseases with an emphasis on a recent breakthrough that characterized a unique autophagosome-lysosome fusion mechanism employed by cardiomyocytes through a lysosomal membrane protein LAMP-2B. This finding may impact the development of future therapeutic applications.


Assuntos
Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Suscetibilidade a Doenças , Lisossomos/metabolismo , Animais , Autofagossomos/metabolismo , Autofagia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Gerenciamento Clínico , Predisposição Genética para Doença , Terapia Genética , Doença de Depósito de Glicogênio Tipo IIb/diagnóstico , Doença de Depósito de Glicogênio Tipo IIb/etiologia , Doença de Depósito de Glicogênio Tipo IIb/metabolismo , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Fusão de Membrana , Proteínas de Membrana , Mutação , Miócitos Cardíacos/metabolismo , Fenótipo
7.
Front Bioeng Biotechnol ; 8: 637538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585427

RESUMO

Ischemic heart disease is the leading cause of morbidity and mortality in the world. While pharmacological and surgical interventions developed in the late twentieth century drastically improved patient outcomes, mortality rates over the last two decades have begun to plateau. Following ischemic injury, pathological remodeling leads to cardiomyocyte loss and fibrosis leading to impaired heart function. Cardiomyocyte turnover rate in the adult heart is limited, and no clinical therapies currently exist to regenerate cardiomyocytes lost following ischemic injury. In this review, we summarize the progress of therapeutic strategies including revascularization and cell-based interventions to regenerate the heart: transiently inducing cardiomyocyte proliferation and direct reprogramming of fibroblasts into cardiomyocytes. Moreover, we highlight recent mechanistic insights governing these strategies to promote heart regeneration and identify current challenges in translating these approaches to human patients.

8.
Circ Res ; 125(7): 662-677, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409188

RESUMO

RATIONALE: Small molecule inhibitors of the acetyl-histone binding protein BRD4 have been shown to block cardiac fibrosis in preclinical models of heart failure (HF). However, since the inhibitors target BRD4 ubiquitously, it is unclear whether this chromatin reader protein functions in cell type-specific manner to control pathological myocardial fibrosis. Furthermore, the molecular mechanisms by which BRD4 stimulates the transcriptional program for cardiac fibrosis remain unknown. OBJECTIVE: We sought to test the hypothesis that BRD4 functions in a cell-autonomous and signal-responsive manner to control activation of cardiac fibroblasts, which are the major extracellular matrix-producing cells of the heart. METHODS AND RESULTS: RNA-sequencing, mass spectrometry, and cell-based assays employing primary adult rat ventricular fibroblasts demonstrated that BRD4 functions as an effector of TGF-ß (transforming growth factor-ß) signaling to stimulate conversion of quiescent cardiac fibroblasts into Periostin (Postn)-positive cells that express high levels of extracellular matrix. These findings were confirmed in vivo through whole-transcriptome analysis of cardiac fibroblasts from mice subjected to transverse aortic constriction and treated with the small molecule BRD4 inhibitor, JQ1. Chromatin immunoprecipitation-sequencing revealed that BRD4 undergoes stimulus-dependent, genome-wide redistribution in cardiac fibroblasts, becoming enriched on a subset of enhancers and super-enhancers, and leading to RNA polymerase II activation and expression of downstream target genes. Employing the Sertad4 (SERTA domain-containing protein 4) locus as a prototype, we demonstrate that dynamic chromatin targeting of BRD4 is controlled, in part, by p38 MAPK (mitogen-activated protein kinase) and provide evidence of a critical function for Sertad4 in TGF-ß-mediated cardiac fibroblast activation. CONCLUSIONS: These findings define BRD4 as a central regulator of the pro-fibrotic cardiac fibroblast phenotype, establish a p38-dependent signaling circuit for epigenetic reprogramming in heart failure, and uncover a novel role for Sertad4. The work provides a mechanistic foundation for the development of BRD4 inhibitors as targeted anti-fibrotic therapies for the heart.


Assuntos
Cromatina/metabolismo , Insuficiência Cardíaca/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miofibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Azepinas/farmacologia , Azepinas/uso terapêutico , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Elementos Facilitadores Genéticos , Epigênese Genética , Matriz Extracelular/metabolismo , Feminino , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Ligação Proteica , RNA Polimerase II/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcriptoma , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Triazóis/farmacologia , Triazóis/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
J Vis Exp ; (136)2018 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-29912202

RESUMO

Trans-differentiation of one somatic cell type into another has enormous potential to model and treat human diseases. Previous studies have shown that mouse embryonic, dermal, and cardiac fibroblasts can be reprogrammed into functional induced-cardiomyocyte-like cells (iCMs) through overexpression of cardiogenic transcription factors including GATA4, Hand2, Mef2c, and Tbx5 both in vitro and in vivo. However, these previous studies have shown relatively low efficiency. In order to restore heart function following injury, mechanisms governing cardiac reprogramming must be elucidated to increase efficiency and maturation of iCMs. We previously demonstrated that inhibition of pro-fibrotic signaling dramatically increases reprogramming efficiency. Here, we detail methods to achieve a reprogramming efficiency of up to 60%. Furthermore, we describe several methods including flow cytometry, immunofluorescent imaging, and calcium imaging to quantify reprogramming efficiency and maturation of reprogrammed fibroblasts. Using the protocol detailed here, mechanistic studies can be undertaken to determine positive and negative regulators of cardiac reprogramming. These studies may identify signaling pathways that can be targeted to promote reprogramming efficiency and maturation, which could lead to novel cell therapies to treat human heart disease.


Assuntos
Reprogramação Celular/genética , Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Diferenciação Celular , Fibroblastos/citologia , Humanos , Camundongos , Miócitos Cardíacos/citologia , Transdução de Sinais
10.
Biophys J ; 107(11): 2546-58, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25468334

RESUMO

Patients with mammographically dense breast tissue have a greatly increased risk of developing breast cancer. Dense breast tissue contains more stromal collagen, which contributes to increased matrix stiffness and alters normal cellular responses. Stromal collagen within and surrounding mammary tumors is frequently aligned and reoriented perpendicular to the tumor boundary. We have shown that aligned collagen predicts poor outcome in breast cancer patients, and postulate this is because it facilitates invasion by providing tracks on which cells migrate out of the tumor. However, the mechanisms by which alignment may promote migration are not understood. Here, we investigated the contribution of matrix stiffness and alignment to cell migration speed and persistence. Mechanical measurements of the stiffness of collagen matrices with varying density and alignment were compared with the results of a 3D microchannel alignment assay to quantify cell migration. We further interpreted the experimental results using a computational model of cell migration. We find that collagen alignment confers an increase in stiffness, but does not increase the speed of migrating cells. Instead, alignment enhances the efficiency of migration by increasing directional persistence and restricting protrusions along aligned fibers, resulting in a greater distance traveled. These results suggest that matrix topography, rather than stiffness, is the dominant feature by which an aligned matrix can enhance invasion through 3D collagen matrices.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Colágeno/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/metabolismo , Feminino , Géis , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA