Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3924, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477731

RESUMO

The serotonergic system and in particular serotonin 1A receptor (5-HT1AR) are implicated in major depressive disorder (MDD). Here we demonstrated that 5-HT1AR is palmitoylated in human and rodent brains, and identified ZDHHC21 as a major palmitoyl acyltransferase, whose depletion reduced palmitoylation and consequently signaling functions of 5-HT1AR. Two rodent models for depression-like behavior show reduced brain ZDHHC21 expression and attenuated 5-HT1AR palmitoylation. Moreover, selective knock-down of ZDHHC21 in the murine forebrain induced depression-like behavior. We also identified the microRNA miR-30e as a negative regulator of Zdhhc21 expression. Through analysis of the post-mortem brain samples in individuals with MDD that died by suicide we find that miR-30e expression is increased, while ZDHHC21 expression, as well as palmitoylation of 5-HT1AR, are reduced within the prefrontal cortex. Our study suggests that downregulation of 5-HT1AR palmitoylation is a mechanism involved in depression, making the restoration of 5-HT1AR palmitoylation a promising clinical strategy for the treatment of MDD.


Assuntos
Encéfalo/fisiopatologia , Depressão/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Receptor 5-HT1A de Serotonina/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Depressão/genética , Depressão/metabolismo , Transtorno Depressivo Maior/genética , Regulação da Expressão Gênica , Humanos , Lipoilação , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Ratos Wistar , Receptor 5-HT1A de Serotonina/genética
2.
Front Cell Neurosci ; 10: 15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26869885

RESUMO

Rett syndrome (RTT) patients experience learning difficulties and memory loss. Analogous deficits of hippocampal plasticity are reported in mouse models of RTT. To elucidate the underlying pathophysiology, we studied long term potentiation (LTP) at the CA3 to CA1 synapses in the hippocampus in acute brain slices from WT and Mecp2(-/y) mice, by either activating cAMP dependent pathway or using high frequency stimulation, by means of patch clamp. We have observed that, the NMDA channel current characteristics remain unchanged in the Mecp2(-/y) mice. The adenylyl cyclase (AC) agonist forskolin evoked a long lasting potentiation of evoked EPSCs in WT CA1 neurons, but only minimally enhanced the EPSCs in the Mecp2(-/y) mice. This weaker potentiation in Mecp2 (-/) (y) mice was ameliorated by application of phosphodiesterase 4 inhibitor rolipram. The hyperpolarization activated cyclic nucleotide gated channel current (I h) was potentiated to similar extent by forskolin in both phenotypes. Multiple tetanus induced cAMP-dependent plasticity was also impaired in the Mecp2 (-/) (y) mice, and was also partially rescued by rolipram. Western blot analysis of CA region of Mecp2 (-/) (y) mice hippocampus revealed more than twofold up-regulation of protein kinase A (PKA) regulatory subunits, while the expression of the catalytic subunit remained unchanged. We hypothesize that the overexpressed PKA regulatory subunits buffer cAMP and restrict the PKA mediated phosphorylation of target proteins necessary for LTP. Blocking the degradation of cAMP, thereby saturating the regulatory subunits alleviated this defect.

3.
Prog Brain Res ; 209: 25-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24746041

RESUMO

Inhibitory interactions between neurons of the respiratory network are involved in rhythm generation and pattern formation. Using a computational model of brainstem respiratory networks, we investigated the possible effects of suppressing glycinergic inhibition on the activity of different respiratory neuron types. Our study revealed that progressive suppression of glycinergic inhibition affected all neurons of the network and disturbed neural circuits involved in termination of inspiration. Causal was a dysfunction of postinspiratory inhibition targeting inspiratory neurons, which often led to irregular preterm reactivation of these neurons, producing double or multiple short-duration inspiratory bursts. An increasing blockade of glycinergic inhibition led to apneustic inspiratory activity. Similar disturbances of glycinergic inhibition also occur during hypoxia. A clear difference in prolonged hypoxia, however, is that the rhythm terminates in expiratory apnea. The critical function of glycinergic inhibition for normal respiratory rhythm generation and the consequences of its reduction, including in pathological conditions, are discussed.


Assuntos
Simulação por Computador , Glicina/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Centro Respiratório/fisiologia , Fenômenos Fisiológicos Respiratórios , Animais , Humanos , Periodicidade
4.
Physiology (Bethesda) ; 29(1): 58-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24382872

RESUMO

The cellular and circuit mechanisms generating the rhythm of breathing in mammals have been under intense investigation for decades. Here, we try to integrate the key discoveries into an updated description of the basic neural processes generating respiratory rhythm under in vivo conditions.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Respiração , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Animais , Humanos , Proteínas do Tecido Nervoso/fisiologia , Mecânica Respiratória/fisiologia , Fenômenos Fisiológicos Respiratórios
5.
J Neurosci ; 32(9): 2915-30, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22378867

RESUMO

The common neurotransmitter serotonin controls different aspects of early neuronal differentiation, although the underlying mechanisms are poorly understood. Here we report that activation of the serotonin 5-HT(7) receptor promotes synaptogenesis and enhances synaptic activity in hippocampal neurons at early postnatal stages. An analysis of Gα(12)-deficient mice reveals a critical role of G(12)-protein for 5-HT(7) receptor-mediated effects in neurons. In organotypic preparations from the hippocampus of juvenile mice, stimulation of 5-HT(7)R/G(12) signaling potentiates formation of dendritic spines, increases neuronal excitability, and modulates synaptic plasticity. In contrast, in older neuronal preparations, morphogenetic and synaptogenic effects of 5-HT(7)/G(12) signaling are abolished. Moreover, inhibition of 5-HT(7) receptor had no effect on synaptic plasticity in hippocampus of adult animals. Expression analysis reveals that the production of 5-HT(7) and Gα(12)-proteins in the hippocampus undergoes strong regulation with a pronounced transient increase during early postnatal stages. Thus, regulated expression of 5-HT(7) receptor and Gα(12)-protein may represent a molecular mechanism by which serotonin specifically modulates formation of initial neuronal networks during early postnatal development.


Assuntos
Envelhecimento/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Neurogênese/genética , Neurônios/fisiologia , Receptores de Serotonina/fisiologia , Transdução de Sinais/genética , Animais , Animais Recém-Nascidos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/biossíntese , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Hipocampo/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Receptores de Serotonina/biossíntese , Receptores de Serotonina/genética , Sinapses/genética
6.
J Cell Sci ; 125(Pt 10): 2486-99, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22357950

RESUMO

Serotonin receptors 5-HT(1A) and 5-HT(7) are highly coexpressed in brain regions implicated in depression. However, their functional interaction has not been established. In the present study we show that 5-HT(1A) and 5-HT(7) receptors form heterodimers both in vitro and in vivo. Foerster resonance energy transfer-based assays revealed that, in addition to heterodimers, homodimers composed either of 5-HT(1A) or 5-HT(7) receptors together with monomers coexist in cells. The highest affinity for complex formation was obtained for the 5-HT(7)-5-HT(7) homodimers, followed by the 5-HT(7)-5-HT(1A) heterodimers and 5-HT(1A)-5-HT(1A) homodimers. Functionally, heterodimerization decreases 5-HT(1A)-receptor-mediated activation of G(i) protein without affecting 5-HT(7)-receptor-mediated signalling. Moreover, heterodimerization markedly decreases the ability of the 5-HT(1A) receptor to activate G-protein-gated inwardly rectifying potassium channels in a heterologous system. The inhibitory effect on such channels was also preserved in hippocampal neurons, demonstrating a physiological relevance of heteromerization in vivo. In addition, heterodimerization is crucially involved in initiation of the serotonin-mediated 5-HT(1A) receptor internalization and also enhances the ability of the 5-HT(1A) receptor to activate the mitogen-activated protein kinases. Finally, we found that production of 5-HT(7) receptors in the hippocampus continuously decreases during postnatal development, indicating that the relative concentration of 5-HT(1A)-5-HT(7) heterodimers and, consequently, their functional importance undergoes pronounced developmental changes.


Assuntos
Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Transdução de Sinais , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Dimerização , Camundongos , Neurônios/metabolismo , Ligação Proteica , Transporte Proteico , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/genética , Receptores de Serotonina/química , Receptores de Serotonina/genética
7.
Eur J Neurosci ; 34(8): 1276-91, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21899601

RESUMO

Brainstem respiratory neurons express the glycine α(3) receptor (Glyα(3) R), which is a target of modulation by several serotonin (5-HT) receptor agonists. Application of the 5-HT(1A) receptor (5-HT(1A) R) agonist 8-OH-DPAT was shown (i) to depress cellular cAMP, leading to dephosphorylation of Glyα(3) R and augmentation of postsynaptic inhibition of neurons expressing Glyα(3) R (Manzke et al., 2010) and (ii) to hyperpolarize respiratory neurons through 5-HT-activated potassium channels. These processes counteract opioid-induced depression and restore breathing from apnoeas often accompanying pharmacotherapy of pain. The effect is postulated to rely on the enhanced Glyα(3) R-mediated inhibition of inhibitory neurons causing disinhibition of their target neurons. To evaluate this proposal and investigate the neural mechanisms involved, an established computational model of the brainstem respiratory network (Smith et al., 2007), was extended by (i) incorporating distinct subpopulations of inhibitory neurons (glycinergic and GABAergic) and their synaptic interconnections within the Bötzinger and pre-Bötzinger complexes and (ii) assigning the 5-HT(1A) R-Glyα(3) R complex to some of these inhibitory neuron types in the network. The modified model was used to simulate the effects of 8-OH-DPAT on the respiratory pattern and was able to realistically reproduce a number of experimentally observed responses, including the shift in the onset of post-inspiratory activity to inspiration and conversion of the eupnoeic three-phase rhythmic pattern into a two-phase pattern lacking the post-inspiratory phase. The model shows how 5-HT(1A) R activation can produce a disinhibition of inspiratory neurons, leading to the recovery of respiratory rhythm from opioid-induced apnoeas.


Assuntos
Tronco Encefálico/anatomia & histologia , Tronco Encefálico/fisiologia , Simulação por Computador , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Respiração , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Analgésicos Opioides/farmacologia , Animais , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Periodicidade , Receptores de Glicina/metabolismo , Receptores Opioides mu/metabolismo , Agonistas do Receptor de Serotonina/farmacologia
8.
J Biol Chem ; 286(26): 23419-31, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21454618

RESUMO

Ratiometric measurements with FRET-based biosensors in living cells using a single fluorescence excitation wavelength are often affected by a significant ion sensitivity and the aggregation behavior of the FRET pair. This is an important problem for quantitative approaches. Here we report on the influence of physiological ion concentration changes on quantitative ratiometric measurements by comparing different FRET pairs for a cAMP-detecting biosensor. We exchanged the enhanced CFP/enhanced YFP FRET pair of an established Epac1-based biosensor by the fluorophores mCerulean/mCitrine. In the case of enhanced CFP/enhanced YFP, we showed that changes in proton, and (to a lesser extent) chloride ion concentrations result in incorrect ratiometric FRET signals, which may exceed the dynamic range of the biosensor. Calcium ions have no direct, but an indirect pH-driven effect by mobilizing protons. These ion dependences were greatly eliminated when mCerulean/mCitrine fluorophores were used. For such advanced FRET pairs the biosensor is less sensitive to changes in ion concentration and allows consistent cAMP concentration measurements under different physiological conditions, as occur in metabolically active cells. In addition, we verified that the described FRET pair exchange increased the dynamic range of the FRET efficiency response. The time window for stable experimental conditions was also prolonged by a faster biosensor expression rate in transfected cells and a greatly reduced tendency to aggregate, which reduces cytotoxicity. These properties were verified in functional tests in single cells co-expressing the biosensor and the 5-HT(1A) receptor.


Assuntos
Técnicas Biossensoriais/métodos , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Animais , Cálcio/análise , Cálcio/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/análise , Proteínas de Fluorescência Verde/biossíntese , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Camundongos , Receptor 5-HT1A de Serotonina/metabolismo
9.
J Clin Invest ; 120(11): 4118-28, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20978350

RESUMO

Rhythmic breathing movements originate from a dispersed neuronal network in the medulla and pons. Here, we demonstrate that rhythmic activity of this respiratory network is affected by the phosphorylation status of the inhibitory glycine receptor α3 subtype (GlyRα3), which controls glutamatergic and glycinergic neuronal discharges, subject to serotonergic modulation. Serotonin receptor type 1A-specific (5-HTR1A-specific) modulation directly induced dephosphorylation of GlyRα3 receptors, which augmented inhibitory glycine-activated chloride currents in HEK293 cells coexpressing 5-HTR1A and GlyRα3. The 5-HTR1A-GlyRα3 signaling pathway was distinct from opioid receptor signaling and efficiently counteracted opioid-induced depression of breathing and consequential apnea in mice. Paradoxically, this rescue of breathing originated from enhanced glycinergic synaptic inhibition of glutamatergic and glycinergic neurons and caused disinhibition of their target neurons. Together, these effects changed respiratory phase alternations and ensured rhythmic breathing in vivo. GlyRα3-deficient mice had an irregular respiratory rhythm under baseline conditions, and systemic 5-HTR1A activation failed to remedy opioid-induced respiratory depression in these mice. Delineation of this 5-HTR1A-GlyRα3 signaling pathway offers a mechanistic basis for pharmacological treatment of opioid-induced apnea and other breathing disturbances caused by disorders of inhibitory synaptic transmission, such as hyperekplexia, hypoxia/ischemia, and brainstem infarction.


Assuntos
Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Glicina/metabolismo , Respiração , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Periodicidade , Fosforilação , Receptor 5-HT1A de Serotonina/genética , Receptores de Glicina/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serotonina/metabolismo
10.
Biochim Biophys Acta ; 1793(11): 1646-55, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19715731

RESUMO

The 5-HT(7) receptor is the most recently described member of the serotonin receptor family. This receptor is mainly expressed in the thalamus, hypothalamus as well as in the hippocampus and cortex. In the present study, we demonstrate that the mouse 5-hydroxytryptamine 5-HT(7(a)) receptor undergoes post-translational modification by the palmitate, which is covalently attached to the protein through a thioester-type bond. Analysis of protein-bound fatty acids revealed that the 5-HT(7(a)) receptor predominantly contains palmitic acid. Labelling experiments performed in the presence of agonists show that the 5-HT(7(a)) receptor is dynamically palmitoylated in an agonist-dependent manner and that previously synthesized receptors may be subjected to repeated cycles of palmitoylation/depalmitoylation. Mutation analysis revealed that cysteine residues 404 and 438/441 located in the C-terminal receptor domain are the main palmitoylation sites responsible for the attachment of 90% of the receptor-bound palmitate. Analysis of acylation-deficient mutants revealed that non-palmitoylated 5-HT(7(a)) receptors were indistinguishable from the wild-type for their ability to interact with G(s)- and G(12)-proteins after agonist stimulation. However, mutation of the proximal palmitoylation site Cys404-Ser (either alone or in combination with Cys438/441-Ser) significantly increased the agonist-independent, G(s)-mediated constitutive 5-HT(7(a)) receptor activity, while the activation of Galpha(12)-protein was not affected. This demonstrates a functional importance of 5-HT(7(a)) dynamic palmitoylation for the fine tuning of receptor-mediated signaling.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Lipoilação/fisiologia , Receptores de Serotonina/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Camundongos , Ácidos Palmíticos/metabolismo , Estrutura Terciária de Proteína/fisiologia , Receptores de Serotonina/genética
11.
Philos Trans R Soc Lond B Biol Sci ; 364(1529): 2589-602, 2009 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-19651659

RESUMO

The cellular effects of serotonin (5-HT), a neuromodulator with widespread influences in the central nervous system, have been investigated. Despite detailed knowledge about the molecular biology of cellular signalling, it is not possible to anticipate the responses of neuronal networks to a global action of 5-HT. Heterogeneous expression of various subtypes of serotonin receptors (5-HTR) in a variety of neurons differently equipped with cell-specific transmitter receptors and ion channel assemblies can provoke diverse cellular reactions resulting in various forms of network adjustment and, hence, motor behaviour. Using the respiratory network as a model for reciprocal synaptic inhibition, we demonstrate that 5-HT(1A)R modulation primarily affects inhibition through glycinergic synapses. Potentiation of glycinergic inhibition of both excitatory and inhibitory neurons induces a functional reorganization of the network leading to a characteristic change of motor output. The changes in network operation are robust and help to overcome opiate-induced respiratory depression. Hence, 5-HT(1A)R activation stabilizes the rhythmicity of breathing during opiate medication of pain.


Assuntos
Tronco Encefálico/metabolismo , Rede Nervosa/parasitologia , Periodicidade , Receptores de Serotonina/metabolismo , Mecânica Respiratória/fisiologia , Agonistas do Receptor de Serotonina/farmacologia , Serotonina/metabolismo , Sinapses/efeitos dos fármacos , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Anticorpos Monoclonais , Tronco Encefálico/efeitos dos fármacos , Buspirona/farmacologia , Gatos , Primers do DNA/genética , Vias Eferentes/efeitos dos fármacos , Vias Eferentes/fisiologia , Imuno-Histoquímica , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Fenóis/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia
12.
Biophys J ; 95(11): 5412-23, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18708470

RESUMO

Förster resonance energy transfer (FRET)-based biosensors for the quantitative analysis of intracellular signaling, including sensors for monitoring cyclic adenosine monophosphate (cAMP), are of increasing interest. The measurement of the donor/acceptor emission ratio in tandem biosensors excited at the donor excitation wavelength is a commonly used technique. A general problem, however, is that this ratio varies not only with the changes in cAMP concentration but also with the changes of the ionic environment or other factors affecting the folding probability of the fluorophores. Here, we use a spectral FRET analysis on the basis of two excitation wavelengths to obtain a reliable measure of the absolute cAMP concentrations with high temporal and spatial resolution by using an "exchange protein directly activated by cAMP". In this approach, FRET analysis is simplified and does not require additional calibration routines. The change in FRET efficiency (E) of the biosensor caused by [cAMP] changes was determined as DeltaE = 15%, whereas E varies between 35% at low and 20% at high [cAMP], allowing quantitative measurement of cAMP concentration in the range from 150 nM to 15 microM. The method described is also suitable for other FRET-based biosensors with a 1:1 donor/acceptor stoichiometry. As a proof of principle, we measured the specially resolved cAMP concentration within living cells and determined the dynamic changes of cAMP levels after stimulation of the Gs-coupled serotonin receptor subtype 7 (5-HT7).


Assuntos
Técnicas Biossensoriais/métodos , AMP Cíclico/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas/metabolismo , Adenilil Ciclases/metabolismo , Animais , Calibragem , Linhagem Celular , AMP Cíclico/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Espaço Intracelular/metabolismo , Camundongos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Receptores de Serotonina/metabolismo , Fatores de Tempo , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/metabolismo
13.
Biochim Biophys Acta ; 1783(8): 1503-16, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18381076

RESUMO

In the present study we analyzed the oligomerization state of the serotonin 5-HT1A receptor and studied oligomerization dynamics in living cells. We also investigated the role of receptor palmitoylation in this process. Biochemical analysis performed in neuroblastoma N1E-115 cells demonstrated that both palmitoylated and non-palmitoylated 5-HT1A receptors form homo-oligomers and that the prevalent receptor species at the plasma membrane are dimers. A combination of an acceptor-photobleaching FRET approach with fluorescence lifetime measurements verified the interaction of CFP- and YFP-labeled wild-type as well as acylation-deficient 5-HT1A receptors at the plasma membrane of living cells. Using a novel FRET technique based on the spectral analysis we also confirmed the specific nature of receptor oligomerization. The analysis of oligomerization dynamics revealed that apparent FRET efficiency measured for wild-type oligomers significantly decreased in response to agonist stimulation, and our combined results suggest that this decrease was mediated by accumulation of FRET-negative complexes rather than by dissociation of oligomers to monomers. In contrast, the agonist-mediated decrease of FRET signal was completely abolished in oligomers composed by non-palmitoylated receptor mutants, demonstrating the importance of palmitoylation in modulation of the structure of oligomers.


Assuntos
Receptor 5-HT1A de Serotonina/química , Animais , Linhagem Celular Tumoral , Dimerização , Transferência Ressonante de Energia de Fluorescência , Lipoilação , Microdomínios da Membrana/química , Camundongos , Fotodegradação , Conformação Proteica , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina , Espectrometria de Fluorescência
14.
J Comp Neurol ; 506(5): 775-90, 2008 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-18076058

RESUMO

Serotonin receptors (5-HTRs) are known to be involved in the regulation of breathing behavior and to mediate neurotrophic actions that exert a significant function in network formation during development. We studied neuronal 5-HT(4(a))R-immunoreactivity (-IR) at developmental ages from E14 to P10. Within the pre-Bötzinger complex (pre-BötC), a part of the respiratory network important for rhythmogenesis, 5-HT(4(a))R-IR was most extensive in rats at an age of E18. The 5-HT(4(a))-IR was found predominantly in the neuropil, whereas somatic staining was sporadic at late embryonic (E18-E20) stages. At birth, we observed a dramatic change to a predominantly somatic staining, and neuropil staining was greatly reduced and disappeared at an age of P4. In all developmental stages, 5-HT(4(a)) and mu-opioid receptors were strongly coexpressed in neurons of the pre-BötC, whereas 5-HT(4(a))R expression was absent in neurons within the dorsal horn. Nestin, a marker for CNS progenitor cells, was used to obtain information about the degree of pre-BötC differentiation. Nestin-positive cells did not appear within the pre-BötC before age E20. At E16, nestin-expressing cells were absent in the nucleus ambiguus (NA) and its ventral periphery. The number of nestin-positive cells increased after birth within and outside the pre-BötC, the majority of cells being glial. Coexpression of nestin and 5-HT(4(a))R was localized predominantly within the NA and appeared only sporadically within the pre-BötC. We conclude that 5-HT(4(a))Rs are important not only for neuromodulation of cellular excitability but also for respiratory network formation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Centro Respiratório/metabolismo , Animais , Ritmo Circadiano/fisiologia , Imuno-Histoquímica , Técnicas In Vitro , Proteínas de Filamentos Intermediários/metabolismo , Bulbo/embriologia , Bulbo/crescimento & desenvolvimento , Bulbo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nestina , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/metabolismo , Centro Respiratório/embriologia , Centro Respiratório/crescimento & desenvolvimento , Células-Tronco , Distribuição Tecidual
16.
Mol Neurobiol ; 35(3): 278-87, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17917116

RESUMO

Several neurotransmitters including serotonin and glutamate have been shown to be involved in many aspects of neural development, such as neurite outgrowth, regulation of neuronal morphology, growth cone motility and dendritic spine shape and density, in addition to their well-established role in neuronal communication. This review focuses on recent advances in our understanding of the molecular mechanisms underlying neurotransmitter-induced changes in neuronal morphology. In the first part of the review, we introduce the roles of small GTPases of the Rho family in morphogenic signaling in neurons and discuss signaling pathways, which may link serotonin, operating as a soluble guidance factor, and the Rho GTPase machinery, controlling neuronal morphology and motility. In the second part of the review, we focus on glutamate-induced neuroplasticity and discuss the evidence on involvement of Rho and Ras GTPases in functional and structural synaptic plasticity triggered by the activation of glutamate receptors.


Assuntos
Forma Celular , Neurônios , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Serotonina/metabolismo , Transdução de Sinais/fisiologia , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Citoesqueleto/metabolismo , Ativação Enzimática , Ácido Glutâmico/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/química , Neurônios/fisiologia , Serotonina/metabolismo
17.
Mol Pharmacol ; 72(3): 502-13, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17540717

RESUMO

In the present study, we have used wild-type and palmitoylation-deficient mouse 5-hydroxytryptamine(1A) receptor (5-HT1A) receptors fused to the yellow fluorescent protein- and the cyan fluorescent protein (CFP)-tagged alpha(i3) subunit of heterotrimeric G-protein to study spatiotemporal distribution of the 5-HT1A-mediated signaling in living cells. We also addressed the question on the molecular mechanisms by which receptor palmitoylation may regulate communication between receptors and G(i)-proteins. Our data demonstrate that activation of the 5-HT1A receptor caused a partial release of Galpha(i) protein into the cytoplasm and that this translocation is accompanied by a significant increase of the intracellular Ca(2+) concentration. In contrast, acylation-deficient 5-HT1A mutants failed to reproduce both Galpha(i3)-CFP relocation and changes in [Ca(2+)](i) upon agonist stimulation. By using gradient centrifugation and copatching assays, we also demonstrate that a significant fraction of the 5-HT1A receptor resides in membrane rafts, whereas the yield of the palmitoylation-deficient receptor in these membrane microdomains is reduced considerably. Our results suggest that receptor palmitoylation serves as a targeting signal responsible for the retention of the 5-HT1A receptor in membrane rafts. More importantly, the raft localization of the 5-HT1A receptor seems to be involved in receptor-mediated signaling.


Assuntos
Microdomínios da Membrana/metabolismo , Ácido Palmítico/metabolismo , Receptor 5-HT1A de Serotonina/deficiência , Receptor 5-HT1A de Serotonina/metabolismo , Transdução de Sinais , Animais , Biotinilação , Cálcio/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Corantes Fluorescentes/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Proteínas Luminescentes/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Células NIH 3T3 , Neuroblastoma/patologia , Fosforilação , Ensaio Radioligante , Receptor 5-HT1A de Serotonina/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
18.
J Physiol ; 579(Pt 3): 863-76, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17204503

RESUMO

Rett syndrome (RTT) is an inborn neurodevelopmental disorder caused by mutations in the X-linked methyl-CpG binding protein 2 gene (MECP2). Besides mental retardation, most patients suffer from potentially life-threatening breathing arrhythmia. To study its pathophysiology, we performed comparative analyses of the breathing phenotype of Mecp2-/y knockout (KO) and C57BL/6J wild-type mice using the perfused working heart-brainstem preparation (WHBP). We simultaneously recorded phrenic and efferent vagal nerve activities to analyse the motor pattern of respiration, discriminating between inspiration, postinspiration and late expiration. Our results revealed respiratory disturbances in KO preparations that were similar to those reported from in vivo measurements in KO mice and also to those seen in RTT patients. The main finding was a highly variable postinspiratory activity in KO mice that correlated closely with breathing arrhythmias leading to repetitive apnoeas even under undisturbed control conditions. Analysis of the pontine and peripheral sensory regulation of postinspiratory activity in KO preparations revealed: (i) prolonged apnoeas associated with enhanced postinspiratory activity after glutamate-induced activation of the pontine Kölliker-Fuse nucleus; and (ii) prolonged apnoeas and lack of reflex desensitization in response to repetitive vagal stimulations. We conclude that impaired network and sensory mediated synaptic control of postinspiration induces severe breathing dysfunctions in Mecp2-/y KO preparations. As postinspiration is particularly important for the control of laryngeal adductors, the finding might explain the upper airway-related clinical problems of patients with RTT such as apnoeas, loss of speech and weak coordination of breathing and swallowing.


Assuntos
Expiração/fisiologia , Inalação/fisiologia , Proteína 2 de Ligação a Metil-CpG/genética , Ponte/fisiologia , Insuficiência Respiratória/fisiopatologia , Síndrome de Rett/fisiopatologia , Animais , Estimulação Elétrica , Genótipo , Ácido Glutâmico/farmacologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microinjeções , Fenótipo , Ponte/efeitos dos fármacos , Insuficiência Respiratória/genética , Síndrome de Rett/genética , Nervo Vago/fisiologia , Cromossomo X
19.
Eur J Neurosci ; 24(1): 145-54, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16800867

RESUMO

Mutant oscillator mice (Glra1(spd -/-)) are characterized by a developmental loss of glycinergic inhibition. These mice die during the third postnatal week presumably due to gradually increasing disturbances of breathing and motor behaviour. Some irregular rhythmic respiratory activity, however, is persevered until they die. Here we analysed cellular mechanisms that compensate for the loss of glycinergic inhibition and contribute to the maintenance of the respiratory rhythm. In a medullary slice preparation including the pre-Bötzinger complex we performed a comparative analysis of after-hyperpolarizations following action potentials (AP-AHP) and burst discharges (burst-AHP) in identified respiratory neurons from oscillator and control mice. Both AHP forms were increased in neurons from oscillator mice. These changes were combined with an augmented adaptation of firing frequency. Assuming that oscillator mice might upregulate calcium-activated K currents (BKCa) in compensation for the loss of glycinergic inhibition, we blocked the big KCa conductances with iberiotoxin and verified that the respiratory rhythm was indeed arrested by BK channel blockade.


Assuntos
Relógios Biológicos/genética , Cálcio/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Fenômenos Fisiológicos Respiratórios , Potenciais de Ação , Animais , Técnicas In Vitro , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neurônios/fisiologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Periodicidade , Estricnina/farmacologia
20.
J Neurophysiol ; 95(3): 1843-52, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16306174

RESUMO

Ongoing rhythmic neuronal activity in the ventral respiratory group (VRG) of the brain stem results in periodic changes of extracellular K+. To estimate the involvement of the weakly inwardly rectifying K+ channel Kir4.1 (KCNJ10) in extracellular K+ clearance, we examined its functional expression in astrocytes of the respiratory network. Kir4.1 was expressed in astroglial cells of the VRG, predominantly in fine astrocytic processes surrounding capillaries and in close proximity to VRG neurons. Kir4.1 expression was up-regulated during early postnatal development. The physiological role of astrocytic Kir4.1 was studied using mice with a null mutation in the Kir4.1 channel gene that were interbred with transgenic mice expressing the enhanced green fluorescent protein in their astrocytes. The membrane potential was depolarized in astrocytes of Kir4.1-/- mice, and Ba2+-sensitive inward K+ currents were diminished. Brain slices from Kir4.1-/- mice, containing the pre-Bötzinger complex, which generates a respiratory rhythm, did not show any obvious differences in rhythmic bursting activity compared with wild-type controls, indicating that the lack of Kir4.1 channels alone does not impair respiratory network activity. Extracellular K+ measurements revealed that Kir4.1 channels contribute to extracellular K+ regulation. Kir4.1 channels reduce baseline K+ levels, and they compensate for the K+ undershoot. Our data indicate that Kir4.1 channels 1) are expressed in perineuronal processes of astrocytes, 2) constitute the major part of the astrocytic Kir conductance, and 3) contribute to regulation of extracellular K+ in the respiratory network.


Assuntos
Potenciais de Ação/fisiologia , Astrócitos/fisiologia , Relógios Biológicos/fisiologia , Bulbo/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Mecânica Respiratória/fisiologia , Animais , Transporte Biológico Ativo/fisiologia , Células Cultivadas , Líquido Extracelular/metabolismo , Retroalimentação/fisiologia , Camundongos , Camundongos Knockout , Potássio , Canais de Potássio Corretores do Fluxo de Internalização/genética , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA