RESUMO
Developing solid-state batteries (SSB) with a lithium metal electrode (LME) using only one type of solid electrolyte (SE) is a significant challenge since no SE fits all the requirements imposed by both electrodes. A possible solution is using multilayer SSBs with an LME where the drawbacks of each SE are overcome by using layers of different SEs. However, research on inorganic SE1|SE2 heteroionic interfaces is still quite preliminary, especially regarding oxide|sulfide heteroionic interfaces. This work reports the electrochemical investigation of the heteroionic interface between Li6.25Al0.25La3Zr2O12 (Al-LLZO) and two representative materials for sulfide-based SEs: argyrodite-based Li6PS5Cl (LPSCl) and glass-like Li7P3S11 (LPS711). Through in-depth temperature- and pressure-dependent impedance analyses of multilayer symmetric cells at equilibrium (i.e., no current load), the electrical properties of the heteroionic interfaces are assessed. The pressure-dependent kinetic of the Al-LLZO|LPSCl pair is interpreted with the concept of geometric constriction resistance and show that its resistance is lower than for the Al-LLZO|LPS711 pair. Furthermore, the effect of Al-LLZO surface treatment on the electrical properties of the Al-LLZO|LPSCl heteroionic interface is evaluated. Such investigation shows that the value of the interface activation energy decreases when the Al-LLZO surface is heat treated, revealing a significant influence of the carbonate/hydroxide passivation layer on the heteroionic interface. Additionally, by cycling the symmetric cell for 900 h at 1.0 mAh·cm-2, it is revealed that the Al-LLZO|LPSCl interface has a lower impedance increase than the Al-LLZO|LPS711 interface, especially if the Al-LLZO is heat treated. With this work, we highlight that the oxide|argyrodite combination can be a promising candidate for multilayer SSBs with an LME. However, we show that an optimized LLZO surface treatment and chemical analysis of the interface are recommended for future research.
RESUMO
Hybrid battery cells that combine a garnet-type Li7La3Zr2O12 (LLZO) solid electrolyte with other solid, polymer or liquid electrolytes are increasingly investigated. In such cells with layered electrolytes, ensuring a low-resistive heteroionic interface between neighboring electrolytes is crucial for preventing major additional overpotentials during operation. Electrochemical impedance spectroscopy is frequently used to extract such parameters, usually on multilayer symmetrical model cells that contain the different electrolytes stacked in series. Unfortunately, the impedance contributions of the heteroionic interfaces often overlap with those of the electrolyte|electrode interfaces, necessitating the use of sophisticated four-point cells that probe the electrochemical potential away from the polarization source. In this work, an alternative solution to this problem is demonstrated by taking advantage of the inherent fast charge transfer kinetics of LLZO with its parent metal electrode. The "resistance-free" nature of a reversible Li|LLZO interface enables a precise evaluation of the heteroionic interface impedance in symmetric two-point cells of the type Li|LLZO|electrolyte|LLZO|Li with negligible electrode contribution. This is exemplified for symmetric multilayer cells containing tantalum-doped LLZO and a poly(ethylene oxide) (PEO)-based dry polymer electrolyte. Validation and comparison of impedance data with results from symmetric four-point cells and two-point cells with ion-blocking electrodes demonstrate the advantage of the proposed method. Overall, this study presents a simple and reliable method for studying heteroionic interface impedances in LLZO-containing multilayer cells.
RESUMO
Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose AI, could predict neurologic changes in the neonatal intensive care unit (NICU). We collected 4,705 hours of video linked to electroencephalograms (EEG) from 115 infants. We trained a deep learning pose algorithm that accurately predicted anatomic landmarks in three evaluation sets (ROC-AUCs 0.83-0.94), showing feasibility of applying pose AI in an ICU. We then trained classifiers on landmarks from pose AI and observed high performance for sedation (ROC-AUCs 0.87-0.91) and cerebral dysfunction (ROC-AUCs 0.76-0.91), demonstrating that an EEG diagnosis can be predicted from video data alone. Taken together, deep learning with pose AI may offer a scalable, minimally invasive method for neuro-telemetry in the NICU.
RESUMO
Sodium all-solid-state batteries may become a novel storage technology overcoming the safety and energy density issues of (liquid-based) sodium ion batteries at low cost and good resource availability. However, compared to liquid electrolyte cells, contact issues and capacity losses due to interface reactions leading to high cell resistance are still a problem in solid-state batteries. In particular, sulfide-based electrolytes, which show very high ionic conductivity and good malleability, exhibit degradation reactions at the interface with electrode materials and carbon additives. A new group of solid electrolytes, i.e., sodium halides, shows wider potential windows and better stability at typical cathode potentials. A detailed investigation of the interface reactions of Na3SbS4 and Na2.4Er0.4Zr0.6Cl6 as catholytes in cathodes and their cycling performance in full cells is performed. X-ray spectroscopy, time-of-flight spectrometry, and impedance spectroscopy are used to study the interface of each catholyte with a transition metal oxide cathode active material. In addition, impedance measurements were used to study the separator electrolyte Na3SbS4 with the catholyte Na2.4Er0.4Zr0.6Cl6. In conclusion, cathodes with Na2.4Er0.4Zr0.6Cl6 show a higher stability at low C-rates, resulting in lower interfacial resistance and improved cycling performance.
RESUMO
Surface-enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical-specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light-matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow-band resonances. Here, a novel concept of resonance-gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high-quality-factor (high-Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit-cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient-resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light-matter interaction phenomena.
RESUMO
Congenital heart disease (CHD) is the most common severe birth anomaly, affecting almost 1% of infants. Most CHD is genetic, but only 40% of patients have an identifiable genetic risk factor for CHD. Chromosomal variation contributes significantly to CHD but is not readily amenable to biological follow-up due to the number of affected genes and lack of evolutionary synteny. The first CHD genes were implicated in extended families with syndromic CHD based on the segregation of risk alleles in affected family members. These have been complemented by more CHD gene discoveries in large-scale cohort studies. However, fewer than half of the 440 estimated human CHD risk genes have been identified, and the molecular mechanisms underlying CHD genetics remains incompletely understood. Therefore, model organisms and cell-based models are essential tools for improving our understanding of cardiac development and CHD genetic risk. Recent advances in genome editing, cell-specific genetic manipulation of model organisms, and differentiation of human induced pluripotent stem cells have recently enabled the characterization of developmental stages. In this chapter, we will summarize the latest studies in CHD genetics and the strengths of various study methodologies. We identify opportunities for future work that will continue to further CHD knowledge and ultimately enable better diagnosis, prognosis, treatment, and prevention of CHD.
Assuntos
Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Lactente , Humanos , Cardiopatias Congênitas/genéticaRESUMO
Rare coding mutations cause â¼45% of congenital heart disease (CHD). Noncoding mutations that perturb cis-regulatory elements (CREs) likely contribute to the remaining cases, but their identification has been problematic. Using a lentiviral massively parallel reporter assay (lentiMPRA) in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we functionally evaluated 6,590 noncoding de novo variants (ncDNVs) prioritized from the whole-genome sequencing of 750 CHD trios. A total of 403 ncDNVs substantially affected cardiac CRE activity. A majority increased enhancer activity, often at regions with undetectable reference sequence activity. Of ten DNVs tested by introduction into their native genomic context, four altered the expression of neighboring genes and iPSC-CM transcriptional state. To prioritize future DNVs for functional testing, we used the MPRA data to develop a regression model, EpiCard. Analysis of an independent CHD cohort by EpiCard found enrichment of DNVs. Together, we developed a scalable system to measure the effect of ncDNVs on CRE activity and deployed it to systematically assess the contribution of ncDNVs to CHD.
Assuntos
Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiopatias Congênitas/genética , Sequências Reguladoras de Ácido Nucleico , Mutação , Miócitos CardíacosRESUMO
Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with the majority of land plants and deliver a wide range of soil-based ecosystem services. Due to their conspicuous belowground lifestyle in a dark environment surrounded by soil particles, much is still to be learned about the influence of environmental (i.e., physical) cues on spore germination, hyphal morphogenesis and anastomosis/hyphal healing mechanisms. To fill existing gaps in AMF knowledge, we developed a new microfluidic platform - the AMF-SporeChip - to visualise the foraging behaviour of germinating Rhizophagus and Gigaspora spores and confront asymbiotic hyphae with physical obstacles. In combination with timelapse microscopy, the fungi could be examined at the cellular level and in real-time. The AMF-SporeChip allowed us to acquire movies with unprecedented visual clarity and therefore identify various exploration strategies of AMF asymbiotic hyphae. We witnessed tip-to-tip and tip-to-side hyphal anastomosis formation. Anastomosis involved directed hyphal growth in a "stop-and-go" manner, yielding visual evidence of pre-anastomosis signalling and decision-making. Remarkably, we also revealed a so-far undescribed reversible cytoplasmic retraction, including the formation of up to 8 septa upon retraction, as part of a highly dynamic space navigation, probably evolved to optimise foraging efficiency. Our findings demonstrated how AMF employ an intricate mechanism of space searching, involving reversible cytoplasmic retraction, branching and directional changes. In turn, the AMF-SporeChip is expected to open many future frontiers for AMF research.
Assuntos
Glomeromycota , Micorrizas , Ecossistema , Simbiose , Hifas , Solo , Microbiologia do SoloRESUMO
The etiologies of newborn deaths in neonatal intensive care units usually remain unknown, even after genetic testing. Whole-genome sequencing, combined with artificial intelligence-based methods for predicting the effects of non-coding variants, provide an avenue for resolving these deaths. Using one such method, SpliceAI, we identified a maternally inherited deep intronic PKHD1 splice variant (chr6:52030169T>C), in trans with a pathogenic missense variant (p.Thr36Met), in a newborn who died of autosomal recessive polycystic kidney disease at age 2 days. We validated the deep intronic variant's impact in maternal urine-derived cells expressing PKHD1. Reverse transcription polymerase chain reaction followed by Sanger sequencing showed that the variant causes inclusion of 147bp of the canonical intron between exons 29 and 30 of PKHD1 into the mRNA, including a premature stop codon. Allele-specific expression analysis at a heterozygous site in the mother showed that the mutant allele completely suppresses canonical splicing. In an unrelated healthy control, there was no evidence of transcripts including the novel splice junction. We returned a diagnostic report to the parents, who underwent in vitro embryo selection.
Assuntos
Íntrons , Rim Policístico Autossômico Recessivo , Receptores de Superfície Celular , Humanos , Recém-Nascido , Masculino , Íntrons/genética , Mutação de Sentido Incorreto , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/diagnóstico , Receptores de Superfície Celular/genéticaRESUMO
Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation.List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A1; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage- (Lin-), LY6A/Sca-1+, KIT/c-Kit/CD117+; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.
Assuntos
Autofagia , Transdução de Sinais , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirolimo/farmacologiaRESUMO
High-index dielectric subwavelength structures and metasurfaces are capable of enhancing light-matter interaction by orders of magnitude via geometry-dependent optical resonances. This enhancement, however, comes with a fundamental limitation of a narrow spectral range of operation in the vicinity of one or few resonant frequencies. Here, this limitation is tackled by introducing an innovative and practical approach to achieve spectrally tunable enhancement of light-matter interaction with resonant metasurfaces. Resonance-gradient metasurfaces are designed and fabricated with varying geometrical parameters that translate into resonant frequencies dependence on one of the coordinates of the metasurface. The metasurfaces are composed of bone-like nanoresonators, which are made of germanium and support high-quality optical resonances in the mid-IR spectral range. The concept is applied to observe the resonant enhancement of the third and fifth harmonics generated from the gradient metasurfaces being used in conjunction with a tunable excitation laser to provide a wide spectral coverage of resonantly-enhanced tunable generation of multiple optical harmonics.
RESUMO
This paper presents a suitable combination of different sodium solid electrolytes to surpass the challenge of highly reactive cell components in sodium batteries. The focus is laid on the introduction of ceramic Na3.4Zr2Si2.4P0.6O12 serving as a protective layer for sulfide-based separator electrolytes to avoid the high reactivity with the sodium metal anode. The chemical instability of the anode|sulfide solid electrolyte interface is demonstrated by impedance spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The Na3.4Zr2Si2.4P0.6O12 disk shows chemical stability with the sodium metal anode as well as the sulfide solid electrolyte. Impedance analysis suggests an electrochemically stable interface. Electron microscopy points to a reaction at the Na3.4Zr2Si2.4P0.6O12 surface toward the sulfide solid electrolyte, which does not seem to affect the performance negatively. The results presented prove the chemical stabilization of the anode-separator interface using a Na3.4Zr2Si2.4P0.6O12 interlayer, which is an important step toward a sodium all-solid-state battery. Due to the applied pressure that is mandatory for battery cells with sulfide-based cathode composite, the use of a brittle ceramic in such cells remains challenging.
RESUMO
Malaria and iron deficiency are major global health problems with extensive epidemiological overlap. Iron deficiency-induced anaemia can protect the host from malaria by limiting parasite growth. On the other hand, iron deficiency can significantly disrupt immune cell function. However, the impact of host cell iron scarcity beyond anaemia remains elusive in malaria. To address this, we employed a transgenic mouse model carrying a mutation in the transferrin receptor (TfrcY20H/Y20H), which limits the ability of cells to internalise iron from plasma. At homeostasis TfrcY20H/Y20H mice appear healthy and are not anaemic. However, TfrcY20H/Y20H mice infected with Plasmodium chabaudi chabaudi AS showed significantly higher peak parasitaemia and body weight loss. We found that TfrcY20H/Y20H mice displayed a similar trajectory of malaria-induced anaemia as wild-type mice, and elevated circulating iron did not increase peak parasitaemia. Instead, P. chabaudi infected TfrcY20H/Y20H mice had an impaired innate and adaptive immune response, marked by decreased cell proliferation and cytokine production. Moreover, we demonstrated that these immune cell impairments were cell-intrinsic, as ex vivo iron supplementation fully recovered CD4+ T cell and B cell function. Despite the inhibited immune response and increased parasitaemia, TfrcY20H/Y20H mice displayed mitigated liver damage, characterised by decreased parasite sequestration in the liver and an attenuated hepatic immune response. Together, these results show that host cell iron scarcity inhibits the immune response but prevents excessive hepatic tissue damage during malaria infection. These divergent effects shed light on the role of iron in the complex balance between protection and pathology in malaria.
Assuntos
Anemia , Deficiências de Ferro , Malária , Plasmodium chabaudi , Animais , Camundongos , Ferro , Malária/parasitologia , Imunidade , Plasmodium chabaudi/fisiologiaRESUMO
The field of battery research is bustling with activity and the plethora of names for batteries that present new cell concepts is indicative of this. Most names have grown historically, each indicative of the research focus in their own time, e.g. lithium-ion batteries, lithium-air batteries, solid-state batteries. Nevertheless, all batteries are essentially made of two electrode layers and an electrolyte layer. This lends itself to a systematic and comprehensive approach by which to identify the cell type and chemistry at a glance. The recent increase in hybridized cell concepts potentially opens a world of new battery types. To retain an overview of this dynamic research field, each battery type is briefly discussed and a systematic typology of battery cells is proposed in the form of the short and universal cell naming system AAM XEBCAM (AAM: anode active material; X: L (liquid), G (gel), PP (plasticized polymer), DP (dry polymer), S (solid), H (hybrid); EB: electrolyte battery; CAM: cathode active material). This classification is based on the principal ion conduction mechanism of the electrolyte during cell operation. Even though the presented typology initiates from the research fields of lithium-ion, solid-state and hybrid battery concepts, it is applicable to any battery cell chemistry.
RESUMO
In this issue of Cell Reports, Redford et al.1 uncouple the role of CD4+ and CD8+ T cells in controlling anorexia and wasting of muscle and adipose tissue during chronic parasitic infections. These results shed light on the impact of adaptive immune cells on organ catabolism.
Assuntos
Linfócitos T CD8-Positivos , Parasitos , Animais , Humanos , Caquexia , Tecido Adiposo , Linfócitos T CD4-PositivosRESUMO
Open reading frames (ORFs) with fewer than 100 codons are generally not annotated in genomes, although bona fide genes of that size are known. Newer biochemical studies have suggested that thousands of small protein-coding ORFs (smORFs) may exist in the human genome, but the true number and the biological significance of the micropeptides they encode remain uncertain. Here, we used a comparative genomics approach to identify high-confidence smORFs that are likely protein-coding. We identified 3,326 high-confidence smORFs using constraint within human populations and evolutionary conservation as additional lines of evidence. Next, we validated that, as a group, our high-confidence smORFs are conserved at the amino-acid level rather than merely residing in highly conserved non-coding regions. Finally, we found that high-confidence smORFs are enriched among disease-associated variants from GWAS. Overall, our results highlight that smORF-encoded peptides likely have important functional roles in human disease.
Assuntos
Peptídeos , Proteínas , Humanos , Fases de Leitura Aberta , Proteínas/genética , Peptídeos/genética , Genoma Humano , MicropeptídeosRESUMO
Cross-institutional journal clubs focused on preprints are a new approach to community-based peer review and allow ERCs to gain experience.