Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(9): 5301-5319, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38381071

RESUMO

Insoluble cytoplasmic aggregate formation of the RNA-binding protein TDP-43 is a major hallmark of neurodegenerative diseases including Amyotrophic Lateral Sclerosis. TDP-43 localizes predominantly in the nucleus, arranging itself into dynamic condensates through liquid-liquid phase separation (LLPS). Mutations and post-translational modifications can alter the condensation properties of TDP-43, contributing to the transition of liquid-like biomolecular condensates into solid-like aggregates. However, to date it has been a challenge to study the dynamics of this process in vivo. We demonstrate through live imaging that human TDP-43 undergoes nuclear condensation in spinal motor neurons in a living animal. RNA-binding deficiencies as well as post-translational modifications can lead to aberrant condensation and altered TDP-43 compartmentalization. Single-molecule tracking revealed an altered mobility profile for RNA-binding deficient TDP-43. Overall, these results provide a critically needed in vivo characterization of TDP-43 condensation, demonstrate phase separation as an important regulatory mechanism of TDP-43 accessibility, and identify a molecular mechanism of how functional TDP-43 can be regulated.


Assuntos
Proteínas de Ligação a DNA , Neurônios Motores , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Condensados Biomoleculares/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Homeostase , Neurônios Motores/metabolismo , Mutação , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
2.
Front Neurosci ; 14: 599812, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328871

RESUMO

γ-Aminobutyric-acid type A (GABA A ) receptors expressing the γ1 or γ3 subunit are only found within a few regions of the brain, some of which are involved in sleep. No known compounds have been reported to selectively target γ1- or γ3-containing GABA A receptors. Pharmacological assessments of this are conflicting, possibly due to differences in experimental models, conditions, and exact protocols when reporting efficacies and potencies. In this study, we evaluated the modulatory properties of five non-benzodiazepine Z-drugs (zaleplon, indiplon, eszopiclone, zolpidem, and alpidem) used in sleep management and the benzodiazepine, diazepam on human α1ß2γ receptors using all three γ subtypes. This was accomplished using concatenated GABA A pentamers expressed in Xenopus laevis oocytes and measured via two-electrode voltage clamp. This approach removes the potential for single subunits to form erroneous receptors that could contribute to the pharmacological assessment of these compounds. No compound tested had significant effects on γ1-containing receptors below 10 µM. Interestingly, zaleplon and indiplon were found to modulate γ3-containing receptors equally as efficacious as γ2-containing receptors. Furthermore, zaleplon had a higher potency for γ3- than for γ2-containing receptors, indicating certain therapeutic effects could occur via these γ3-containing receptors. Eszopiclone modulated γ3-containing receptors with reduced efficacy but no reduction in potency. These data demonstrate that the imidazopyridines zaleplon and indiplon are well suited to further investigate potential γ3 effects on sleep in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA