RESUMO
In order to understand how isomerization of the retinal drives unidirectional transmembrane ion transport in bacteriorhodopsin, we determined the atomic structures of the BR state and M photointermediate of the E204Q mutant, to 1.7 and 1.8 A resolution, respectively. Comparison of this M, in which proton release to the extracellular surface is blocked, with the previously determined M in the D96N mutant indicates that the changes in the extracellular region are initiated by changes in the electrostatic interactions of the retinal Schiff base with Asp85 and Asp212, but those on the cytoplasmic side originate from steric conflict of the 13-methyl retinal group with Trp182 and distortion of the pi-bulge of helix G. The structural changes suggest that protonation of Asp85 initiates a cascade of atomic displacements in the extracellular region that cause release of a proton to the surface. The progressive relaxation of the strained 13-cis retinal chain with deprotonated Schiff base, in turn, initiates atomic displacements in the cytoplasmic region that cause the intercalation of a hydrogen-bonded water molecule between Thr46 and Asp96. This accounts for the lowering of the pK(a) of Asp96, which then reprotonates the Schiff base via a newly formed chain of water molecules that is extending toward the Schiff base.
Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Retinaldeído/química , Retinaldeído/metabolismo , Substituição de Aminoácidos , Bacteriorodopsinas/genética , Cristalografia por Raios X , Citoplasma/química , Citoplasma/metabolismo , Ligação de Hidrogênio , Transporte de Íons , Isomerismo , Luz , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Prótons , Bases de Schiff/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade , Água/metabolismoRESUMO
Crystal structures of the Asp96 to Asn mutant of the light-driven proton pump bacteriorhodopsin and its M photointermediate produced by illumination at ambient temperature have been determined to 1.8 and 2.0 angstroms resolution, respectively. The trapped photoproduct corresponds to the late M state in the transport cycle-that is, after proton transfer to Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. Its density map describes displacements of side chains near the retinal induced by its photoisomerization to 13-cis,15-anti and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pKa values (where Ka is the acid constant) of the Schiff base and Asp85. The structural changes detected suggest the means for conserving energy at the active site and for ensuring the directionality of proton translocation.
Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Bombas de Próton/química , Bombas de Próton/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Citoplasma/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Transporte de Íons , Isomerismo , Luz , Modelos Moleculares , Fotólise , Fótons , Mutação Puntual , Conformação Proteica , Estrutura Secundária de Proteína , Prótons , Retinaldeído/química , Retinaldeído/metabolismo , Bases de Schiff , Termodinâmica , ÁguaRESUMO
Th?e atomic structure of the light-driven ion pump bacteriorhodopsin and the surrounding lipid matrix was determined by X-ray diffraction of crystals grown in cubic lipid phase. In the extracellular region, an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base and the proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline? kink. The bulge is stabilized by hydrogen-bonding of the main-chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The results indicate extensive involvement of bound water molecules in both the structure and the function of this seven-helical membrane protein. A bilayer of 18 tightly bound lipid chains forms an annulus around the protein in the crystal. Contacts between the trimers in the membrane plane are mediated almost exclusively by lipids.
Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Lipídeos/química , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína , Retinaldeído/metabolismo , Bases de Schiff , Eletricidade EstáticaRESUMO
Photoisomerization of the retinal of bacteriorhodopsin initiates a cyclic reaction in which a proton is translocated across the membrane. Studies of this protein promise a better understanding of how ion pumps function. Together with a large amount of spectroscopic and mutational data, the atomic structure of bacteriorhodopsin, determined in the last decade at increasing resolutions, has suggested plausible but often contradictory mechanisms. X-ray diffraction of bacteriorhodopsin crystals grown in cubic lipid phase revealed unexpected two-fold symmetries that indicate merohedral twinning along the crystallographic c axis. The structure, refined to 2.3 angstroms taking this twinning into account, is different from earlier models, including that most recently reported. One of the carboxyl oxygen atoms of the proton acceptor Asp85 is connected to the proton donor, the retinal Schiff base, through a hydrogen-bonded water and forms a second hydrogen bond with another water. The other carboxyl oxygen atom of Asp85 accepts a hydrogen bond from Thr89. This structure forms the active site. The nearby Arg82 is the center of a network of numerous hydrogen-bonded residues and an ordered water molecule. This network defines the pathway of the proton from the buried Schiff base to the extracellular surface.
Assuntos
Bacteriorodopsinas/química , Prótons , Ácido Aspártico/química , Bacteriorodopsinas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Ligantes , Luz , Modelos Moleculares , Fotoquímica , Conformação Proteica , Estrutura Secundária de Proteína , Retinaldeído/química , Bases de Schiff/química , ÁguaRESUMO
Glu-194 near the extracellular surface of bacteriorhodopsin is indispensable for proton release to the medium upon protonation of Asp-85 during light-driven transport. As for Glu-204, its replacement with glutamine (but not aspartate) abolishes both proton release and the anomalous titration of Asp-85 that originates from coupling between the pKa of this buried aspartate and those of the other acidic groups. Unlike the case of Glu-204, however, replacement of Glu-194 with aspartate raises the pKa for proton release. In Fourier transform infrared spectra of the E194D mutant a prominent positive band is observed at 1720 cm-1. It can be assigned from [4-13C]aspartate and D2O isotope shifts to the C&dbd;O stretch of protonated Asp-194. Its rise correlates with proton transfer from the retinal Schiff base to Asp-85. Its decay coincides with the appearance of a proton at the surface, detected under similar conditions with fluorescein covalently bound to Lys-129 and with pyranine. Its amplitude decreases with increasing pH, with a pKa of about 9. We show that this pKa is likely to be that of the internal proton donor to Asp-194, the Glu-204 site, before photoexcitation, while 13C NMR titration indicates that Asp-194 has an initial pKa of about 3. We propose that there is a chain of interacting residues between the retinal Schiff base and the extracellular surface. After photoisomerization of the retinal the pKa's change so as to allow (i) Asp-85 to become protonated by the Schiff base, (ii) the Glu-204 site to transfer its proton to Asp-194 in E194D, and therefore to Glu-194 in the wild type, and (iii) residue 194 to release the proton to the medium.
Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Bacteriorodopsinas/genética , Sítios de Ligação/genética , Membrana Celular/metabolismo , Ácido Glutâmico/química , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Fotoquímica , Mutação Puntual , Conformação Proteica , Prótons , Retinaldeído/química , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The last intermediate in the photocycle of the light-driven proton pump bacteriorhodopsin is the red-shifted O state. The structure and dynamics of the last step in the photocycle were characterized with time-resolved Fourier transform infrared spectroscopy of the mutants of Glu-204 and Leu-93, which accumulate this intermediate in much larger amounts than the wild type. The results show that E204Q and E204D give distorted all-trans-retinal chromophore like the O intermediate of the wild type. This is simply due to the perturbation of the proton acceptor function of Glu-204 in the O-to-BR transition in the Glu-204 mutants. The corresponding red-shifted intermediates of L93M, L93T, and L93S have a 13-cis chromophore like the N intermediate of the wild type, as reported from analysis of extracted retinal [Delaney, J. K., Schweiger, U., & Subramaniam, S. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 11120-11124]. In spite of their different chromophore structures from the O intermediate, the red-shifted intermediates are similar to the O intermediate but not to the N intermediate of the wild type with respect to structural changes in the peptide carbonyls. The structural changes around Asp-96 in the N intermediate are completely restored also in the red-shifted intermediates of the Leu-93 mutants like in the O intermediate. These results imply that the protein structural changes in the last step proceed regardless of thermal isomerization of the chromophore. Time-resolved Fourier transform infrared spectroscopy with the Glu-204 mutants suggests that the response of Asp-204 (Glu-204 in the wild type) to the protonation of Asp-85 during formation of the M intermediate, which results in proton release, is slow and may occur through structural changes.
Assuntos
Bacteriorodopsinas/química , Glutamina , Leucina , Cinética , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-AtividadeRESUMO
In the last step of the bacteriorhodopsin photocycle the initial state is regenerated from the O intermediate in an essentially unidirectional reaction. Comparison of the rate of this photocycle step and the rate of deprotonation of Asp-85 in pH jump experiments with various site-specific mutants indicates that recovery of the initial state is influenced by (1) residues such as Glu-204 that affect deprotonation of Asp-85 and (2) residues such as Leu-93 that contact the retinal and therefore must affect its thermal reisomerization from 13-cis to all-trans as suggested by Delaney, Schweiger, and Subramaniam (Proc. Natl. Acad. Sci. U.S.A. 92, 11120-11124, 1995). These results, together with FTIR spectra (Kandori, Hatanaka, Yamazaki, Needleman, Brown, Richter, Lanyi, & Maeda, manuscript in preparation) of the last intermediate in the photocycles of representatives of the two kinds of mutants, E204Q and L93M, suggest the following sequence of events: reisomerization of the retinal from 13-cis to an all-trans configuration that contains a twisted chain (with high amplitude hydrogen out-of-plane vibrational bands) triggers proton transfer from Asp-85 to Glu-204 or directly to the extracellular surface, and the proton transfer in turn triggers relaxation of the twist in the retinal. The involvement of the proton transfer in the kinetics of this sequence suggests the reason for the unidirectionality of the overall reaction: upon reisomerization of the retinal the very low pKa of Asp-85 in the unphotolyzed protein is reestablished and this residue thereby becomes a good proton donor.
Assuntos
Bacteriorodopsinas/química , Retinaldeído/química , Ácido Aspártico , Fenômenos Químicos , Físico-Química , Cinética , Prótons , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
According to earlier reports, residue 85 in the bacteriorhodopsin mutants D85E and Y185F deprotonates with two apparent pKa values. Additionally, in Y185F, Asp-85 becomes significantly more protonated during light adaptation. We provide a new explanation for these findings. It is based on the scheme that links the protonation state of residue 85 to the protonation state of residue 204 (S.P. Balashov, E.S. Imasheva, R. Govindjee, and T.G. Ebrey. 1996. Biophys. J. 70:473-481; H.T. Richter, L.S. Brown, R. Needleman, and J.K. Lanyi. 1996. Biochemistry. 35:4054-4062) and justified by the observation that the biphasic titration curves of D85E and Y185F are converted to monophasic when the E204Q residue change is introduced as a second mutation. Accordingly, the D85E and Y 185F mutations are not the cause of the biphasic titration, as that is a property of the wild-type protein. By perturbing the extracellular region of the protein, the mutations increase the pKa of residue 85. This increases the amplitude of the second titration component and makes the biphasic character of the curves more obvious. Likewise, a small rise in the pKa of Asp-85 when the retinal isomerizes from 13-cis, 15-syn to all-trans accounts for the changed titration behavior of Y185F after light adaptation. This mechanism simplifies and unites the interpretation of what had appeared to be complex and unrelated phenomena.
Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Ácido Aspártico , Escuridão , Ácido Glutâmico , Halobacterium/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Luz , Mutagênese Sítio-Dirigida , Fenilalanina , Mutação Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometria , TirosinaRESUMO
Because asp-85 is the acceptor of the retinal Schiff base proton during light-driven proton transport by bacteriorhodopsin, modulation of its pKa in the photocycle is to be expected. The complex titration of asp-85 in the unphotolyzed protein was suggested [Balashov, S. P., Govindjee, R., Imasheva, E. S., Misra, S., Ebrey, T. G., Feng, Y., Crouch, R. K., & Menick, D. R (1995) Biochemistry 34, 8820-8834] to reflect the dependence of this residue on the protonation state of another, unidentified group. From the pH dependencies of the rate constant for the thermal equilibration of retinal isomeric states (dark adaptation) and the deprotonation kinetics of the Schiff base during the photocycle in the E204Q and E204D mutants, we identify the residue as glu-204. The nature of its interaction with asp-85 is that at neutral pH either residue can be anionic but not both. This is consistent with our recent finding that glu-204 is the origin of the proton released to the extracellular surface upon protonation of asp-85 during the transport. We propose, therefore, that the following series of events occur in the photocycle. Protonation of asp-85 in the proton equilibrium with the Schiff base of the photoisomerized retinal results in the dissociation of glu-204 and proton release to the extracellular surface. The deprotonation of glu-204, in turn, raises the pK(a) of asp-85, and the equilibrium with the Schiff base shifts toward complete proton transfer. This constitutes the first phase of the reprotonation switch because it excludes asp-85 as a donor in the reprotonation of the Schiff base that follows. The sequential structural changes of the protein that ensue, detected earlier by diffraction, are suggested to facilitate the change of the access of the Schiff base toward the cytoplasmic side as the second phase of the switch, and the lowering the pKa of asp-96, so as to make it a proton donor, as the third phase.