Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 14(10): 848-58, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25279932

RESUMO

Abstract The unicellular photosynthetic freshwater flagellate Euglena gracilis is a promising candidate as an oxygen producer in biological life-support systems. In this study, the capacity of Euglena gracilis to cope with different light regimes was determined. Cultures of Euglena gracilis in closed bioreactors were exposed to different dark-light cycles (40 W/m(2) light intensity on the surface of the 20 L reactor; cool white fluorescent lamps in combination with a 100 W filament bulb): 1 h-1 h, 2 h-2 h, 4 h-4 h, 6 h-6 h, and 8 h-16 h, respectively. Motility and oxygen development in the reactors were measured constantly. It was found that, during exposure to light-dark cycles of 1 h-1 h, 2 h-2 h, 4 h-4 h, and 6 h-6 h, precision of gravitaxis as well as the number of motile cells increased during the dark phase, while velocity increased in the light phase. Oxygen concentration did not yet reach a plateau phase. During dark-light cycles of 8 h-16 h, fast changes of movement behavior in the cells were detected. The cells showed an initial decrease of graviorientation after onset of light and an increase after the start of the dark period. In the course of the light phase, graviorientation increased, while motility and velocity decreased after some hours of illumination. In all light profiles, Euglena gracilis was able to produce sufficient oxygen in the light phase to maintain the oxygen concentration above zero in the subsequent dark phase.


Assuntos
Reatores Biológicos , Euglena gracilis/fisiologia , Euglena gracilis/efeitos da radiação , Luz , Fotoperíodo , Fotossíntese/efeitos da radiação , Escuridão , Euglena gracilis/efeitos dos fármacos , Gravitropismo/efeitos dos fármacos , Gravitropismo/efeitos da radiação , Movimento/efeitos dos fármacos , Movimento/efeitos da radiação , Oxigênio/farmacologia , Fotossíntese/efeitos dos fármacos
2.
J Photochem Photobiol B ; 138: 273-81, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24998868

RESUMO

In the wake of global climate change, phytoplankton productivity and species composition is expected to change due to altered external conditions such as temperature, nutrient accessibility, pH and exposure to solar visible (PAR) and ultraviolet radiation (UVR). The previous light history is also of importance for the performance of phytoplankton cells. In order to assess the combined impacts of UVR and temperature on the dinoflagellate Gymnodinium chlorophorum we analyzed the effective photochemical quantum yield (Y), relative electron transport rate vs. irradiance curves (rETR vs. I), percentage of motile cells and swimming velocity. Cells were grown at three different temperatures (15, 20 and 25 °C) and two PAR intensities: low light (LL, 100 µmol photons m(-2) s(-1)) and high light (HL, 250 µmol photons m(-2) s(-1)). Pre-acclimated cells were then exposed to either PAR only (P), PAR+UV-A (PA) or PAR+UV-A+UV-B (PAB) radiation at two different irradiances, followed by a recovery period in darkness. The Y decreased during exposure, being least inhibited in P and most in PAB treatments. Inhibition was higher and recovery slower in LL-grown cells than in HL-grown cells at 15° and 20 °C, but the opposite occurred at 25 °C, when exposed to high irradiances. Maximal values of rETR were determined at t0 as compared to the different (before and after exposure) radiation treatments. The effects of temperature and UVR on rETR were antagonistic in LL-grown cells (i.e., less UVR inhibition at higher temperature), while it was synergistic in HL cells. Swimming velocity and percentage of motile cells were not affected at all tested temperatures and exposure regimes, independent of the light history. Our results indicate that, depending on the previous light history, increased temperature and UVR as predicted under climate change conditions, can have different interactions thus conditioning the photosynthetic response of G. chlorophorum.


Assuntos
Dinoflagellida/fisiologia , Atividade Motora/efeitos da radiação , Fotossíntese/efeitos da radiação , Raios Ultravioleta , Mudança Climática , Transporte de Elétrons , Teoria Quântica , Temperatura
3.
Planta ; 233(5): 1055-62, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21286747

RESUMO

The unicellular flagellate Euglena gracilis shows positive phototaxis at low-light intensities (<10 W/m(2)) and a negative one at higher irradiances (>10 W/m(2)). Phototaxis is based on blue light-activated adenylyl cyclases, which produce cAMP upon irradiation. In the absence of light the cells swim upward in the water column (negative gravitaxis). The results of sounding rocket campaigns and of a large number of ground experiments led to the following model of signal perception and transduction in gravitaxis of E. gracilis: The body of the cell is heavier than the surrounding medium, sediments and thereby exerts a force onto the lower membrane. Upon deviation from a vertical swimming path mechano-sensitive ion channels are activated. Calcium is gated inwards which leads to an increase in the intracellular calcium concentration and causes a change of the membrane potential. After influx, calcium activates one of several calmodulins found in Euglena, which in turn activates an adenylyl cyclase (different from the one involved in phototaxis) to produce cAMP from ATP. One further element in the sensory transduction chain of both phototaxis and gravitaxis is a specific protein kinase A. We found five different protein kinases A in E. gracilis. The blockage of only one of these (PK.4, accession No. EU935859) by means of RNAi inhibited both phototaxis and gravitaxis, while inhibition of the other four affected neither phototaxis nor gravitaxis. It is assumed that cAMP directly activates this protein kinase A which may in turn phosphorylate a protein involved in the flagellar beating mechanism.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Euglena gracilis/enzimologia , Gravitropismo/fisiologia , Fototropismo/fisiologia , Sequência de Bases , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ativação Enzimática , Euglena gracilis/efeitos dos fármacos , Euglena gracilis/fisiologia , Gravitropismo/efeitos dos fármacos , Transdução de Sinal Luminoso , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Dados de Sequência Molecular , Fotofosforilação , Fototropismo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Estaurosporina/farmacologia
4.
Photochem Photobiol ; 83(4): 810-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17645651

RESUMO

Diurnal vertical migration in the water column and the impact of solar radiation on motility were investigated in three marine phytoplankton species: Tetraselmis suecica, Dunaliella salina and Gymnodinium chlorophorum. Cells were exposed to solar radiation either in ultraviolet radiation (UVR, 280-400 nm) transparent Plexiglas tubes (45 cm length, 10 cm diameter) or in quartz tubes under three radiation treatments: PAB (280-700 nm), PA (320-700 nm) and P (400-700 nm). The three species displayed different behavior after exposure to solar radiation. Tetraselmis suecica was insensitive to UVR and under high solar radiation levels, cells accumulated preferentially near the surface. Exposure experiments did not indicate any significant changes in swimming speed nor in the percentage of motile cells after 5 h of exposure. On the other hand, D. salina was sensitive to UV-B displaying a significant decrease in swimming speed and percentage of motile cells after 2-3 h of exposure. Moreover, D. salina cells migrated deep in the water column when irradiance was high. The response of G. chlorophorum was in between that of the other two species tested, with a slight (but significant) decrease in swimming speed and percentage of motile cells in all radiation treatments after 5 h of exposure. While G. chlorophorum cells were more or less homogenously distributed in the water column, a slight (but significant) avoidance response to high radiation was observed at local noon, with cells migrating deep in the water column. Our data clearly indicate that these sub-lethal effects of solar radiation are species-specific and they might have important implications for the aquatic ecosystem.


Assuntos
Fitoplâncton/efeitos da radiação , Luz Solar , Movimento , Fitoplâncton/fisiologia , Especificidade da Espécie
5.
Microgravity Sci Technol ; 14(3): 17-24, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14658453

RESUMO

Euglena gracilis and its close relative Astasia longa show a pronounced negative gravitactic behavior. Many experiments revealed that gravitaxis is most likely mediated by an active physiological mechanism. The goal of the present study was to examine elements in the sensory transduction by means of inhibitors of gravitaxis and the intracellular calcium concentration during short microgravity periods. During the course of six parabolic flights (ESA 31th parabolic flight campaign and DLR 6th parabolic flight campaign) the effects of trifluoperazine (calmodulin inhibitor), caffeine (phosphodiesterase inhibitor) and gadolinium (blocks mechano-sensitive ion channels) was investigated. Due to the extreme parabolic flight maneuvers of the aircraft alternating phases of 1.8 x g(n) (about 20 s) and microgravity (about 22 s) were achieved (g(n): acceleration of Earth's gravity field). The duration of the microgravity periods was sufficient to detect a loss of cell orientation in the samples. In the presence of gadolinium impaired gravitaxis was found during acceleration, while caffeine-treated cells showed, compared to the controls, a very precise gravitaxis and faster reorientation in the 1.8 x g(n) period following microgravity. A transient increase of the intracellular calcium upon increased acceleration was detected also in inhibitor-treated samples. Additionally, it was found that the cells showed a higher calcium signal when they deviated from the vertical swimming direction. In the presence of trifluoperazine a slightly higher general calcium signal was detected compared to untreated controls, while gadolinium was found to decrease the intracellular calcium concentration. In the presence of caffeine no clear changes of intracellular calcium were detected compared to the control.


Assuntos
Euglena longa/fisiologia , Sensação Gravitacional/efeitos dos fármacos , Hipergravidade , Transdução de Sinais/efeitos dos fármacos , Voo Espacial , Ausência de Peso , Aceleração , Animais , Cafeína/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/fisiologia , Euglena longa/efeitos dos fármacos , Gadolínio/farmacologia , Sensação Gravitacional/fisiologia , Orientação/efeitos dos fármacos , Orientação/fisiologia , Inibidores de Fosfodiesterase/farmacologia , Transdução de Sinais/fisiologia , Natação , Trifluoperazina/farmacologia , Gravação em Vídeo
6.
J Plant Physiol ; 159(2): 181-90, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12481803

RESUMO

The unicellular freshwater flagellate Euglena gracilis and its close relative Astasia longa show a pronounced negative gravitaxis. Previous experiments revealed that gravitaxis is most likely mediated by an active physiological mechanism in which changes of the internal calcium concentration and the membrane potential play an important role. In a recent parabolic flight experiment on board an aircraft (ESA 29th parabolic flight campaign), changes of graviorientation, membrane potential and the cytosolic calcium concentration upon changes of the acceleration (between 1 x g(n), 1.8 x g(n), microgravity) were monitored by image analysis and photometric methods using Oxonol VI (membrane potential) and Calcium Crimson (cytosolic calcium concentration). The parabolic flight maneuvers performed by the aircraft resulted in transient phases of 1.8 x g(n) (about 20 s), microgravity (about 22 s) followed by 1.8 x g(n) (about 20 s). A transient increase in the intracellular calcium concentration was detected from lower to higher accelerations (1 x g(n) to 1.8 x g(n) or microgravity to 1.8 x g(n)). Oxonol VI-labeled cells showed a signal, which indicates a depolarization during the transition from 1 x g(n) to 1.8 x g(n), a weak repolarization in microgravity followed by a rapid repolarization in the subsequent 1 x g(n) phase. The results show good coincidence with observations of recent terrestrial and space experiments.


Assuntos
Cálcio/metabolismo , Euglena gracilis/fisiologia , Gravitação , Orientação/fisiologia , Voo Espacial , Ausência de Peso , Aceleração , Animais , Canais de Cálcio/fisiologia , Euglena gracilis/metabolismo , Euglênidos/metabolismo , Euglênidos/fisiologia , Corantes Fluorescentes , Sensação Gravitacional/fisiologia , Hipergravidade , Isoxazóis , Potenciais da Membrana/fisiologia , Compostos Orgânicos , Natação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA