Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JVS Vasc Sci ; 3: 336-344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439700

RESUMO

Background: Therapeutic angiogenesis aims to induce new blood vessel growth in ischemic tissues; however, previous clinical trials have had limited success. Studies of uterine angiogenesis revealed a specialized subset of natural killer (NK) cells, called uterine NK (uNK) cells, which have unique proangiogenic abilities. Methods: We show that uNK cells in mice express ephrin-B2, a regulator of angiogenesis, to induce tubule formation in an ex vivo coculture tubule formation assay. We next induced the expression of ephrin-B2 by splenic NK (sNK) cells harvested from male mice. Results: We showed that induced NK (iNK) cells can also instruct endothelial cells to form tubules using ephrin-B2. Conclusions: We concluded that Ephrin-B2 is a marker of proangiogenic uNK cells and that a proangiogenic phenotype characterized by ephrin-B2 can be induced in sNK cells to induce therapeutic angiogenesis.

2.
Mol Oncol ; 14(10): 2436-2454, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32797726

RESUMO

Tumor acidity is the key metabolic feature promoting cancer progression and is modulated by pH regulators on a cancer cell's surface that pump out excess protons/lactic acid for cancer cell survival. Neutralizing tumor acidity improves the therapeutic efficacy of current treatments including immunotherapies. Vacuolar-ATPase (V-ATPase) proton pumps encompass unique plasma membrane-associated subunit isoforms, making this molecule an important target for anticancer therapy. Here, we examined the in vivo therapeutic efficacy of an antibody (a2v-mAB) targeting specific V-ATPase-'V0a2' surface isoform in controlling ovarian tumor growth. In vitro a2v-mAb treatment inhibited the proton pump activity in ovarian cancer (OVCA) cells. In vivo intraperitoneal a2v-mAb treatment drastically delayed ovarian tumor growth with no measurable in vivo toxicity in a transplant tumor model. To explore the possible mechanism causing delayed tumor growth, histochemical analysis of the a2v-mAb-treated tumor tissues displayed high immune cell infiltration (M1-macrophages, neutrophils, CD103+ cells, and NK cells) and an enhanced antitumor response (iNOS, IFN-y, IL-1α) compared to control. There was marked decrease in CA-125-positive cancer cells and an enhanced active caspase-3 expression in a2v-mAb-treated tumors. RNA-seq analysis of a2v-mAb tumor tissues further revealed upregulation of apoptosis-related and toll-like receptor pathway-related genes. Indirect coculture of a2v-mAb-treated OVCA cells with human PBMCs in an unbuffered medium led to an enhanced gene expression of antitumor molecules IFN-y, IL-17, and IL-12-A in PBMCs, further validating the in vivo antitumor responses. In conclusion, V-ATPase inhibition using a monoclonal antibody directed against the V0a2 isoform increases antitumor immune responses and could therefore constitute an effective treatment strategy in OVCA.


Assuntos
Anticorpos Monoclonais/farmacologia , Imunidade , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Caspase 3/metabolismo , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células , Meios de Cultivo Condicionados/farmacologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Nus , Gradação de Tumores , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Toll-Like/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA