Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
2.
Mol Ecol ; : e17412, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780141

RESUMO

Homoploid hybrid speciation is challenging to document because hybridization can lead to outcomes other than speciation. Thus, some authors have argued that establishment of homoploid hybrid speciation should include evidence that reproductive barriers isolating the hybrid neo-species from its parental species were derived from hybridization. While this criterion is difficult to satisfy, several recent papers have successfully employed a common pipeline to identify candidate genes underlying such barriers and (in one case) to validate their function. We describe this pipeline, its application to several plant and animal species and what we have learned about homoploid hybrid speciation as a consequence. We argue that - given the ubiquity of admixture and the polygenic basis of reproductive isolation - homoploid hybrid speciation could be much more common and more protracted than suggested by earlier conceptual arguments and theoretical studies.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38503508

RESUMO

Surprisingly little attention has been given to the impact of selfing on speciation, even though selfing reduces gene flow between populations and affects other key population genetics parameters. Here we review recent theoretical work and compile empirical data from crossing experiments and genomic and phylogenetic studies to assess the effect of mating systems on the speciation process. In accordance with theoretical predictions, we find that accumulation of hybrid incompatibilities seems to be accelerated in selfers, but there is so far limited empirical support for a predicted bias toward underdominant loci. Phylogenetic evidence is scarce and contradictory, including studies suggesting that selfing either promotes or hampers speciation rate. Further studies are therefore required, which in addition to measures of reproductive barrier strength and selfing rate should routinely include estimates of demographic history and genetic divergence as a proxy for divergence time.

4.
Theor Appl Genet ; 137(3): 56, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386181

RESUMO

KEY MESSAGE: A new OrAnom1 gene introgressed in cultivated sunflower from wild Helianthus anomalus confers late post-attachment resistance to Orobanche cumana race G and maps to a target interval in Chromosome 4 where two receptor-like kinases (RLKs) have been identified in the H. anomalus genome as putative candidates. Sunflower broomrape is a parasitic weed that infects sunflower (Helianthus annuus L.) roots causing severe yield losses. Breeding for resistance is the most effective and sustainable control method. In this study, we report the identification, introgression, and genetic and physiological characterization of a new sunflower source of resistance to race G of broomrape developed from the wild annual sunflower H. anomalus (accession PI 468642). Crosses between PI 468642 and the susceptible line P21 were carried out, and the genetic study was conducted in BC1F1, BC1F2, and its derived BC1F3 populations. A BC1F5 germplasm named ANOM1 was developed through selection for race G resistance and resemblance to cultivated sunflower. The resistant trait showed monogenic and dominant inheritance. The gene, named OrAnom1, was mapped to Chromosome 4 within a 1.2 cM interval and co-segregated with 7 SNP markers. This interval corresponds to a 1.32 Mb region in the sunflower reference genome, housing a cluster of receptor-like kinase and receptor-like protein (RLK-RLP) genes. Notably, the analysis of the H. anomalus genome revealed the absence of RLPs in the OrAnom1 target region but featured two RLKs as possible OrAnom1 candidates. Rhizotron and histological studies showed that OrAnom1 determines a late post-attachment resistance mechanism. Broomrape can establish a vascular connection with the host, but parasite growth is stopped before tubercle development, showing phenolic compounds accumulation and tubercle necrosis. ANOM1 will contribute to broadening the genetic basis of broomrape resistance in the cultivated sunflower pool and to a better understanding of the molecular basis of the sunflower-broomrape interaction.


Assuntos
Helianthus , Orobanche , Helianthus/genética , Melhoramento Vegetal , Necrose , Fenóis
5.
Mol Ecol ; 33(1): e17239, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146175
6.
Elife ; 122023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095362

RESUMO

Local adaptation commonly involves alleles of large effect, which experience fitness advantages when in positive linkage disequilibrium (LD). Because segregating inversions suppress recombination and facilitate the maintenance of LD between locally adapted loci, they are also commonly found to be associated with adaptive divergence. However, it is unclear what fraction of an adaptive response can be attributed to inversions and alleles of large effect, and whether the loci within an inversion could still drive adaptation in the absence of its recombination-suppressing effect. Here, we use genome-wide association studies to explore patterns of local adaptation in three species of sunflower: Helianthus annuus, Helianthus argophyllus, and Helianthus petiolaris, which each harbour a large number of species-specific inversions. We find evidence of significant genome-wide repeatability in signatures of association to phenotypes and environments, which are particularly enriched within regions of the genome harbouring an inversion in one species. This shows that while inversions may facilitate local adaptation, at least some of the loci can still harbour mutations that make substantial contributions without the benefit of recombination suppression in species lacking a segregating inversion. While a large number of genomic regions show evidence of repeated adaptation, most of the strongest signatures of association still tend to be species-specific, indicating substantial genotypic redundancy for local adaptation in these species.


In plants, like in humans, DNA is arranged into sections known as genes that are in turn organised into structures called chromosomes. Mutations that modify the activity of these genes can help plant species to adapt to a new environment or to extreme conditions such as drought. However, successful adaptation often requires changes in many different genes. If these sets of genes are located close to each other on the same chromosome, any mutations will likely be passed onto the next generation together. If the genes are located further away, or even on different chromosomes, they may instead be inherited separately so that the next generation does not benefit as much from the adaptation. A chromosome inversion ­ when a segment of chromosome breaks off and reattaches the other way around ­ can increase the likelihood that sets of mutations on the same chromosome will be inherited together. Many previous studies have found that chromosome inversions tend to drive the ability of species to adapt to different environments by keeping together mutations that affect the same characteristics. However, it is not clear how inversions affect the repeatability of the adaptation, that is, if another group of closely related plants faced the same challenge in their environment would they evolve in the same way, or would they evolve a new response? To address this question, Soudi, Jahani et al. used a genetics approach known as a genome wide association study to explore how three closely related species of sunflower have adapted to their respective environments. Two of the species grow in various environments across the centre and west of the USA that are often hot and dry, whereas the third species is restricted to the more humid coastal plain of Texas, USA. The experiments found that a few key genes had changed in all three sunflower species. However, each species also had mutations in a larger set of unique genes that were not changed in the other species. Regions of chromosomes harbouring inversions in one of the species tended to have more of the key genes within them, compared to other genomic regions. This was also true for species that did not have inversions in those regions. This demonstrates that genes in regions affected by chromosome inversions can still help plants adapt to changes in the environment even in the absence of inversions. Sunflowers are widely grown for their edible oily seeds. In the future, some of the key genes identified in this work may be useful candidates for plant breeding to improve the resilience of sunflowers to drought, high temperatures and other environmental challenges.


Assuntos
Helianthus , Helianthus/genética , Estudo de Associação Genômica Ampla , Genômica , Desequilíbrio de Ligação , Genótipo
7.
Mol Ecol ; 32(24): 6729-6742, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37873879

RESUMO

Biological invasions represent an extraordinary opportunity to study evolution. This is because accidental or deliberate species introductions have taken place for centuries across large geographical scales, frequently prompting rapid evolutionary transitions in invasive populations. Until recently, however, the utility of invasions as evolutionary experiments has been hampered by limited information on the makeup of populations that were part of earlier invasion stages. Now, developments in ancient and historical DNA technologies, as well as the quickening pace of digitization for millions of specimens that are housed in herbaria and museums globally, promise to help overcome this obstacle. In this review, we first introduce the types of temporal data that can be used to study invasions, highlighting the timescale captured by each approach and their respective limitations. We then discuss how ancient and historical specimens as well as data available from prior invasion studies can be used to answer questions on mechanisms of (mal)adaptation, rates of evolution, or community-level changes during invasions. By bridging the gap between contemporary and historical invasive populations, temporal data can help us connect pattern to process in invasion science. These data will become increasingly important if invasions are to achieve their full potential as experiments of evolution in nature.


Assuntos
DNA , Museus , DNA/genética , Biologia
8.
Mol Plant ; 16(10): 1518-1546, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37515323

RESUMO

The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.


Assuntos
Mudança Climática , Melhoramento Vegetal , Animais , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Edição de Genes , Genoma de Planta
9.
Ecol Evol ; 13(5): e9961, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181203

RESUMO

We call for journals to commit to requiring open data be archived in a format that will be simple and clear for readers to understand and use. If applied consistently, these requirements will allow contributors to be acknowledged for their work through citation of open data, and facilitate scientific progress.

10.
Plant Commun ; 4(5): 100599, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37050879

RESUMO

Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.


Assuntos
Genômica , Plantas , Plantas/genética , Genoma de Planta/genética , Isolamento Reprodutivo , Hibridização Genética
12.
Trends Ecol Evol ; 38(7): 631-642, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36870806

RESUMO

A recurring feature of oceanic archipelagos is the presence of adaptive radiations that generate endemic, species-rich clades that can offer outstanding insight into the links between ecology and evolution. Recent developments in evolutionary genomics have contributed towards solving long-standing questions at this interface. Using a comprehensive literature search, we identify studies spanning 19 oceanic archipelagos and 110 putative adaptive radiations, but find that most of these radiations have not yet been investigated from an evolutionary genomics perspective. Our review reveals different gaps in knowledge related to the lack of implementation of genomic approaches, as well as undersampled taxonomic and geographic areas. Filling those gaps with the required data will help to deepen our understanding of adaptation, speciation, and other evolutionary processes.


Assuntos
Evolução Biológica , Especiação Genética , Filogenia , Ecologia , Genômica
14.
Nat Commun ; 14(1): 1717, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973251

RESUMO

Adaptation is the central feature and leading explanation for the evolutionary diversification of life. Adaptation is also notoriously difficult to study in nature, owing to its complexity and logistically prohibitive timescale. Here, we leverage extensive contemporary and historical collections of Ambrosia artemisiifolia-an aggressively invasive weed and primary cause of pollen-induced hayfever-to track the phenotypic and genetic causes of recent local adaptation across its native and invasive ranges in North America and Europe, respectively. Large haploblocks-indicative of chromosomal inversions-contain a disproportionate share (26%) of genomic regions conferring parallel adaptation to local climates between ranges, are associated with rapidly adapting traits, and exhibit dramatic frequency shifts over space and time. These results highlight the importance of large-effect standing variants in rapid adaptation, which have been critical to A. artemisiifolia's global spread across vast climatic gradients.


Assuntos
Ambrosia , Plantas Daninhas , Ambrosia/genética , Plantas Daninhas/genética , Aclimatação , Adaptação Fisiológica/genética , Evolução Biológica
15.
Proc Natl Acad Sci U S A ; 120(14): e2221410120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972441
16.
Proc Natl Acad Sci U S A ; 120(14): e2205783119, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972449

RESUMO

Crop wild relatives represent valuable sources of alleles for crop improvement, including adaptation to climate change and emerging diseases. However, introgressions from wild relatives might have deleterious effects on desirable traits, including yield, due to linkage drag. Here, we analyzed the genomic and phenotypic impacts of wild introgressions in inbred lines of cultivated sunflower to estimate the impacts of linkage drag. First, we generated reference sequences for seven cultivated and one wild sunflower genotype, as well as improved assemblies for two additional cultivars. Next, relying on previously generated sequences from wild donor species, we identified introgressions in the cultivated reference sequences, as well as the sequence and structural variants they contain. We then used a ridge-regression best linear unbiased prediction (BLUP) model to test the effects of the introgressions on phenotypic traits in the cultivated sunflower association mapping population. We found that introgression has introduced substantial sequence and structural variation into the cultivated sunflower gene pool, including >3,000 new genes. While introgressions reduced genetic load at protein-coding sequences, they mostly had negative impacts on yield and quality traits. Introgressions found at high frequency in the cultivated gene pool had larger effects than low-frequency introgressions, suggesting that the former likely were targeted by artificial selection. Also, introgressions from more distantly related species were more likely to be maladaptive than those from the wild progenitor of cultivated sunflower. Thus, breeding efforts should focus, as far as possible, on closely related and fully compatible wild relatives.


Assuntos
Helianthus , Helianthus/genética , Genoma de Planta/genética , Melhoramento Vegetal , Genótipo , Genômica
17.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36648104

RESUMO

Sunflowers of the genus Helianthus are models for hybridization research and contain three of the best-studied examples of homoploid hybrid speciation. To understand a broader picture of hybridization within the annual sunflowers, we used whole-genome resequencing to conduct a phylogenomic analysis and test for gene flow between lineages. We find that all annual sunflower species tested have evidence of admixture, suggesting hybridization was common during the radiation of the genus. Support for the major species tree decreases with increasing recombination rate, consistent with hybridization and introgression contributing to discordant topologies. Admixture graphs found hybridization to be associated with the origins of the three putative hybrid species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus). However, the hybridization events are more ancient than suggested by previous work. Furthermore, H. anomalus and H. deserticola appear to have arisen from a single hybridization event involving an unexpected donor, rather than through multiple independent events as previously proposed. This means our results are consistent with, but not definitive proof of, two ancient independent homoploid hybrid speciation events in the genus. Using a broader data set that covers the whole Helianthus genus, including perennial species, we find that signals of introgression span the genus and beyond, suggesting highly divergent introgression and/or the sorting of ancient haplotypes. Thus, Helianthus can be viewed as a syngameon in which largely reproductively isolated species are linked together by occasional or frequent gene flow.


Assuntos
Helianthus , Helianthus/genética , Filogenia , Hibridização Genética , Haplótipos , Fluxo Gênico
18.
Annu Rev Plant Biol ; 74: 697-725, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36608349

RESUMO

Similar traits and functions commonly evolve in nature. Here, we explore patterns of replicated evolution across the plant kingdom and discuss the processes responsible for such patterns. We begin this review by defining replicated evolution and the theoretical, genetic, and ecological concepts that help explain it. We then focus our attention on empirical cases of replicated evolution at the phenotypic and genotypic levels. We find that replication at the ecotype level is common, but evidence for repeated ecological speciation is surprisingly sparse. On the other hand, the replicated evolution of ecological strategies and physiological mechanisms across similar biomes appears to be pervasive. We conclude by highlighting where future efforts can help us bridge the understanding of replicated evolution across different levels of biological organization. Earth's landscape is diverse but also repeats itself. Organisms seem to have followed suit.


Assuntos
Ecossistema , Ecótipo , Fenótipo , Evolução Biológica
19.
Plant Dis ; 107(3): 667-674, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35857370

RESUMO

Diaporthe gulyae and D. helianthi cause Phomopsis stem canker of sunflower (Helianthus annuus L.) in the United States. Because Phomopsis stem canker did not gain importance until the disease epidemic in 2010, limited studies were conducted to understand the genetic basis of sunflower resistance to D. gulyae and D. helianthi. The objectives of this study were to evaluate the United States Department of Agriculture cultivated accessions for resistance to D. gulyae and D. helianthi as well as to utilize genome-wide association studies (GWAS) to identify quantitative trait loci (QTLs) and putative candidate genes underlying those loci common to both organisms. For each fungus, 213 accessions were screened in a complete randomized design in the greenhouse and the experiment was repeated once. Six plants per accession were inoculated with a single isolate of D. gulyae or D. helianthi at four to six true leaves using the mycelium-contact inoculation method. At 15 days (D. gulyae) and 30 days (D. helianthi) postinoculation, accessions were evaluated for disease severity and compared with the susceptible confection inbred PI 552934. GWAS identified 28 QTLs common to the two fungi, and 24 genes overlapped close to these QTLs. Additionally, it was observed that the resistance QTLs derived mainly from landraces rather than from wild species. Seventeen putative candidate genes associated with resistance to D. gulyae or D. helianthi were identified that may be related to plant-pathogen interactions. These findings advanced our understanding of the genetic basis of resistance to D. gulyae and D. helianthi and will help develop resources for genomics-assisted breeding.


Assuntos
Ascomicetos , Helianthus , Melhoramento Vegetal , Doenças das Plantas , Ascomicetos/patogenicidade , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Helianthus/genética , Helianthus/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA