RESUMO
Efficient delivery of therapeutic proteins and vaccine antigens to intracellular targets is challenging due to generally poor cell membrane permeation and endolysosomal entrapment causing degradation. Herein, these challenges are addressed by developing an oxygen-tolerant photoinitiated polymerization-induced self-assembly (Photo-PISA) process, allowing for the microliter-scale (10 µL) synthesis of protein-loaded polymersomes directly in 1536-well plates. High-resolution techniques capable of analysis at a single particle level are employed to analyze protein encapsulation and release mechanisms. Using confocal microscopy and super-resolution stochastic optical reconstruction microscopy (STORM) imaging, their ability to deliver proteins into the cytosol following endosomal escape is subsequently visualized. Lastly, the adaptability of these polymersomes is exploited to encapsulate and deliver a prototype vaccine antigen, demonstrating its ability to activate antigen-presenting cells and support antigen cross-presentation for applications in subunit vaccines and cancer immunotherapy. This combination of ultralow volume synthesis and efficient intracellular delivery holds significant promise for unlocking the high throughput screening of a broad range of otherwise cost-prohibitive or early-stage therapeutic protein and vaccine antigen candidates that can be difficult to obtain in large quantities. The versatility of this platform for rapid screening of intracellular protein delivery can result in significant advancements across the fields of nanomedicine and biomedical engineering.
RESUMO
Donor-acceptor Stenhouse adduct (DASA) photoswitches have gained a lot of attention since their discovery in 2014. Their negative photochromism, visible light absorbance, synthetic tunability, and the large property changes between their photoisomers make them attractive candidates over other commonly used photoswitches for use in materials with responsive or adaptive properties. The development of such materials and their translation into advanced technologies continues to widely impact forefront materials research, and DASAs have thus attracted considerable interest in the field of visible-light responsive molecular switches and dynamic materials. Despite this interest, there have been challenges in understanding their complex behavior in the context of both small molecule studies and materials. Moreover, incorporation of DASAs into polymers can be challenging due to their incompatibility with the conditions for most common polymerization techniques. In this review, therefore, we examine and critically discuss the recent developments and challenges in the field of DASA-containing polymers, aiming at providing a better understanding of the interplay between the properties of both constituents (matrix and photoswitch). The first part summarizes current understanding of DASA design and switching properties. The second section discusses strategies of incorporation of DASAs into polymers, properties of DASA-containing materials, and methods for studying switching of DASAs in materials. We also discuss emerging applications for DASA photoswitches in polymeric materials, ranging from light-responsive drug delivery systems, to photothermal actuators, sensors and photoswitchable surfaces. Last, we summarize the current challenges in the field and venture on the steps required to explore novel systems and expand both the functional properties and the application opportunities of DASA-containing polymers.
RESUMO
Microrobots can provide spatiotemporally well-controlled cargo delivery that can improve therapeutic efficiency compared to conventional drug delivery strategies. Robust microfabrication methods to expand the variety of materials or cargoes that can be incorporated into microrobots can greatly broaden the scope of their functions. However, current surface coating or direct blending techniques used for cargo loading result in inefficient loading and poor cargo protection during transportation, which leads to cargo waste, degradation and non-specific release. Herein, a versatile platform to fabricate fillable microrobots using microfluidic loading and dip sealing (MLDS) is presented. MLDS enables the encapsulation of different types of cargoes within hollow microrobots and protection of cargo integrity. The technique is supported by high-resolution 3D printing with an integrated microfluidic loading system, which realizes a highly precise loading process and improves cargo loading capacity. A corresponding dip sealing strategy is developed to encase and protect the loaded cargo whilst maintaining the geometric and structural integrity of the loaded microrobots. This dip sealing technique is suitable for different materials, including thermal and light-responsive materials. The MLDS platform provides new opportunities for microrobotic systems in targeted drug delivery, environmental sensing, and chemically powered micromotor applications.
RESUMO
A significant factor hindering the clinical translation of polymersomes as vesicular nanocarriers is the limited availability of comparative studies detailing their interaction with blood plasma proteins compared to liposomes. Here, polymersomes are self-assembled via film rehydration, solvent exchange, and polymerization-induced self-assembly using five different block copolymers. The hydrophilic blocks are composed of anti-fouling polymers, poly(ethylene glycol) (PEG) or poly(2-methyl-2-oxazoline) (PMOXA), and all the data is benchmarked to PEGylated "stealth" liposomes. High colloidal stability in human plasma (HP) is confirmed for all but two tested nanovesicles. In situ fluorescence correlation spectroscopy measurements are then performed after incubating unlabeled nanovesicles with fluorescently labeled HP or the specific labeled plasma proteins, human serum albumin, and clusterin (apolipoprotein J). The binding of HP to PMOXA-polymersomes could explain their relatively short circulation times found previously. In contrast, PEGylated liposomes also interact with HP but accumulate high levels of clusterin, providing them with their known prolonged circulation time. The absence of significant protein binding for most PEG-polymersomes indicates mechanistic differences in protein interactions and associated downstream effects, such as cell uptake and circulation time, compared to PEGylated liposomes. These are key observations for bringing polymersomes closer to clinical translation and highlighting the importance of such comparative studies.
Assuntos
Clusterina , Lipossomos , Humanos , Polímeros/química , Polietilenoglicóis/química , Albumina Sérica Humana , Proteínas Sanguíneas , Espectrometria de FluorescênciaRESUMO
The circadian rhythm generates out-of-equilibrium metabolite oscillations that are controlled by feedback loops under light/dark cycles. Here we describe a non-equilibrium nanosystem comprising a binary population of enzyme-containing polymersomes capable of light-gated chemical communication, controllable feedback and coupling to macroscopic oscillations. The populations consist of esterase-containing polymersomes functionalized with photo-responsive donor-acceptor Stenhouse adducts (DASA) and light-insensitive semipermeable urease-loaded polymersomes. The DASA-polymersome membrane becomes permeable under green light, switching on esterase activity and decreasing the pH, which in turn initiates the production of alkali in the urease-containing population. A pH-sensitive pigment that absorbs green light when protonated provides a negative feedback loop for deactivating the DASA-polymersomes. Simultaneously, increased alkali production deprotonates the pigment, reactivating esterase activity by opening the membrane gate. We utilize light-mediated fluctuations of pH to perform non-equilibrium communication between the nanoreactors and use the feedback loops to induce work as chemomechanical swelling/deswelling oscillations in a crosslinked hydrogel. We envision possible applications in artificial organelles, protocells and soft robotics.
Assuntos
Nanotecnologia , Urease , Retroalimentação , EsterasesRESUMO
Infectious diseases continue to pose a substantial burden on global populations, requiring innovative broad-spectrum prophylactic and treatment alternatives. Here, we have designed modular synthetic polymer nanoparticles that mimic functional components of host cell membranes, yielding multivalent nanomimics that act by directly binding to varied pathogens. Nanomimic blood circulation time was prolonged by reformulating polymer-lipid hybrids. Femtomolar concentrations of the polymer nanomimics were sufficient to inhibit herpes simplex virus type 2 (HSV-2) entry into epithelial cells, while higher doses were needed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given their observed virustatic mode of action, the nanomimics were also tested with malaria parasite blood-stage merozoites, which lose their invasive capacity after a few minutes. Efficient inhibition of merozoite invasion of red blood cells was demonstrated both in vitro and in vivo using a preclinical rodent malaria model. We envision these nanomimics forming an adaptable platform for developing pathogen entry inhibitors and as immunomodulators, wherein nanomimic-inhibited pathogens can be secondarily targeted to sites of immune recognition.
RESUMO
Constructing artificial systems that effectively replace or supplement natural biological machinery within cells is one of the fundamental challenges underpinning bioengineering. At the sub-cellular scale, artificial organelles (AOs) have significant potential as long-acting biomedical implants, mimicking native organelles by conducting intracellularly compartmentalized enzymatic actions. The potency of these AOs can be heightened when judiciously combined with genetic engineering, producing highly tailorable biohybrid cellular systems. Here, the authors present a cost-effective, microliter scale (10 µL) polymersome (PSome) synthesis based on polymerization-induced self-assembly for the in situ encapsulation of Gaussia luciferase (GLuc), as a model luminescent enzyme. These GLuc-loaded PSomes present ideal features of AOs including enhanced enzymatic resistance to thermal, proteolytic, and intracellular stresses. To demonstrate their biomodulation potential, the intracellular luminescence of GLuc-loaded PSomes is coupled to optogenetically engineered cardiomyocytes, allowing modulation of cardiac beating frequency through treatment with coelenterazine (CTZ) as the substrate for GLuc. The long-term intracellular stability of the luminescent AOs allows this cardiostimulatory phenomenon to be reinitiated with fresh CTZ even after 7 days in culture. This synergistic combination of organelle-mimicking synthetic materials with genetic engineering is therefore envisioned as a highly universal strategy for the generation of new biohybrid cellular systems displaying unique triggerable properties.
Assuntos
Células Artificiais , Luciferases/análise , Luciferases/genética , Miócitos Cardíacos , Optogenética , Organelas/químicaRESUMO
Some marine plankton called dinoflagellates emit light in response to the movement of surrounding water, resulting in a phenomenon called milky seas or sea sparkle. The underlying concept, a shear-stress induced permeabilisation of biocatalytic reaction compartments, is transferred to polymer-based nanoreactors. Amphiphilic block copolymers that carry nucleobases in their hydrophobic block are self-assembled into polymersomes. The membrane of the vesicles can be transiently switched between an impermeable and a semipermeable state by shear forces occurring in flow or during turbulent mixing of polymersome dispersions. Nucleobase pairs in the hydrophobic leaflet separate when mechanical force is applied, exposing their hydrogen bonding motifs and therefore making the membrane less hydrophobic and more permeable for water soluble compounds. This polarity switch is used to release payload of the polymersomes on demand, and to activate biocatalytic reactions in the interior of the polymersomes.
Assuntos
Dinoflagellida/metabolismo , Polímeros/química , Biocatálise , Dinoflagellida/enzimologia , Fluoresceína/química , Fluoresceína/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Resistência ao Cisalhamento , Espectrofotometria Ultravioleta , TemperaturaRESUMO
The fight against tropical diseases such as malaria requires the development of innovative biosensing techniques. Diagnostics must be rapid and robust to ensure prompt case management and to avoid further transmission. The malaria biomarker hemozoin can catalyze atom transfer radical polymerizations (ATRP), which we exploit in a polymerization-amplified biosensing assay for hemozoin based on the precipitation polymerization of N-isopropyl acrylamide (NIPAAm). The reaction conditions are systematically investigated using synthetic hemozoin to gain fundamental understanding of the involved reactions and to greatly reduce the amplification time, while maintaining the sensitivity of the assay. The use of excess ascorbate allows oxygen to be consumed in situ but leads to the formation of reactive oxygen species and to the decomposition of the initiator 2-hydroxyethyl 2-bromoisobutyrate (HEBIB). Addition of sodium dodecyl sulfate (SDS) and pyruvate results in better differentiation between the blank and hemozoin-containing samples. Optimized reaction conditions (including reagents, pH, and temperature) reduce the amplification time from 37 ± 5 min to 3 ± 0.5 min while maintaining a low limit of detection of 1.06 ng mL-1. The short amplification time brings the precipitation polymerization assay a step closer to a point-of-care diagnostic device for malaria. Future efforts will be dedicated to the isolation of hemozoin from clinical samples.
Assuntos
Hemeproteínas , Malária , Biomarcadores , Humanos , Malária/diagnóstico , PolimerizaçãoRESUMO
The hemoglobin content of blood is an important health indicator, and the presence of microscopic amounts of hemoglobin in places where it normally does not occur, e.g. in blood plasma or in urine, is a sign of diseases such as hemolytic anemia or urinary tract infections. Thus, methods to detect and quantify hemoglobin are important for clinical laboratories, blood banks, and for point-of-care diagnostics. The precipitation polymerization of N-isopropylacrylamide by hemoglobin-catalyzed atom transfer radical polymerization (ATRP) is used as an assay for hemoglobin quantification relying on the formation of turbidity as a simple optical read-out. Dose-response curves for pure hemoglobin and for hemoglobin in blood plasma, in urine, in erythrocytes, and in full blood are obtained. Turbidity formation increases with the concentration of hemoglobin. Concentrations of hemoglobin as low as 6.45 × 10-3 mg mL-1 in solution, 4.88 × 10-1 mg mL-1 in plasma, and 1.65 × 10-1 mg mL-1 in urine could be detected, which is below the clinically relevant concentrations in the respective body fluids. Total hemoglobin in full blood is also accurately determined. The reaction can be regarded as a polymerization-based signal amplification for the sensing of hemoglobin, as the analyte catalyzes the formation of radicals which add many monomer units into detectable polymer chains. While most established hemoglobin tests involve the use of highly toxic reagents such as potassium cyanide, the polymerization-based test uses simple and stable organic reagents. Thus, it is an environmentally friendlier alternative to established chemical assays for hemoglobin.
Assuntos
Acrilamidas/metabolismo , Líquidos Corporais/química , Hemoglobinas/análise , Hemoglobinas/metabolismo , Acrilamidas/química , Biocatálise , Líquidos Corporais/metabolismo , Humanos , PolimerizaçãoRESUMO
Two key concepts in living organisms are that biochemical reactions are sequestered into reaction compartments such as cells and organelles, and that many of the complex biological reaction cascades involve transient activation of reactions in response to external triggers. Here we review our efforts to implement these concepts into artificial nanoreactors. Block copolymer vesicles (polymersomes) for laccase-catalyzed oxidations as well as a generally applicable permeabilization method for polymersome membranes are highlighted. Moreover, polymersome nanoreactors that can be switched on by visible light and that immediately return to their off state in the dark are reviewed. These systems have the potential to create bio-inspired catalytic systems, e.g. to orchestrate reaction cascades.
Assuntos
Nanoestruturas , PolímerosRESUMO
Methods to diagnose malaria are of paramount interest to eradicate the disease. Current methods have severe limitations, as they are either costly or not sensitive enough to detect low levels of parasitemia. Here we report an ultrasensitive, yet low-resource chemical assay for the detection and quantification of hemozoin, a biomarker of all Plasmodium species. Solubilized hemozoin catalyzes the atom transfer radical polymerization of N-isopropylacrylamide above the lower critical solution temperature of poly(N-isopropylacrylamide). The solution becomes turbid, which can be observed by naked eye and quantified by UV-visible spectroscopy. The rate of turbidity increase is proportional to the concentration of hemozoin, with a detection limit of 0.85 ng mL-1. Malaria parasites in human blood can be detected down to 10 infected red blood cells µL-1. The assay could potentially be applied as a point-of-care test. The signal-amplification of an analyte by biocatalytic precipitation polymerization represents a powerful approach in biosensing.
Assuntos
Acrilamidas/química , Resinas Acrílicas/química , Bioensaio , Técnicas Biossensoriais , Hemeproteínas/química , Malária Falciparum/diagnóstico , Plasmodium falciparum/química , Biocatálise , Eritrócitos/parasitologia , Hemeproteínas/isolamento & purificação , Humanos , Limite de Detecção , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Polimerização , Espectrofotometria/métodosRESUMO
Malaria is caused by Plasmodium sp. parasites transmitted by infected female Anopheles sp. mosquitoes. The survival of the parasites in the host relies on detoxifying free heme by biocrystallization into insoluble crystals called hemozoin. This mechanism of self-preservation is targeted by a certain class of antimalarial drugs, which are screened and selected based on their capacity to inhibit the formation of hemozoin crystals. Therefore, experimental techniques capable of accurately characterizing the kinetics of crystal formation are valuable. Relying on the optical anisotropy of hemozoin, the kinetics of ß-hematin crystal formation through the statistical analysis of photon counts of dynamic depolarized light scattering (DDLS), in the absence and presence of an antimalarial drug (chloroquine, CQ), is described. It is found that CQ has an impact on both the nucleation and growth of the crystals.
RESUMO
Transient activation of biochemical reactions by visible light and subsequent return to the inactive state in the absence of light is an essential feature of the biochemical processes in photoreceptor cells. To mimic such light-responsiveness with artificial nanosystems, polymersome nanoreactors were developed that can be switched on by visible light and self-revert fast in the dark at room temperature to their inactive state. Donor-acceptor Stenhouse adducts (DASAs), with their ability to isomerize upon irradiation with visible light, were employed to change the permeability of polymersome membranes by switching polarity from a nonpolar triene-enol form to a cyclopentenone with increased polarity. To this end, amphiphilic block copolymers containing poly(pentafluorophenyl methacrylate) in their hydrophobic block were synthesized by reversible addition-fragmentation chain-transfer (RAFT) radical polymerization and functionalized either with a DASA that is based on Meldrum's acid or with a novel fast-switching pyrazolone-based DASA. These polymers were self-assembled into vesicles. Release of hydrophilic payload could be triggered by light and stopped as soon as the light was turned off. The encapsulation of enzymes yielded photoresponsive nanoreactors that catalyzed reactions only if they were irradiated with light. A mixture of polymersome nanoreactors, one that switches in green light, the other switching in red light, permitted specific control of the individual reactions of a reaction cascade in one pot by irradiation with varied wavelengths, thus enabling light-controlled wavelength-selective catalysis. The DASA-based nanoreactors demonstrate the potential of DASAs to switch permeability of membranes and could find application to switch reactions on and off, on demand, e.g., in microfluidics or in drug delivery.
Assuntos
Ciclopentanos/química , Metacrilatos/química , Nanocápsulas/química , Pirazolonas/química , Catálise , Preparações de Ação Retardada/química , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Luz , Membranas Artificiais , Microquímica , Permeabilidade , PolimerizaçãoRESUMO
Sensing of damage, deformation, and mechanical forces is of vital importance in many applications of fiber-reinforced polymer composites, as it allows the structural health and integrity of composite components to be monitored and microdamage to be detected before it leads to catastrophic material failure. Bioinspired and biomimetic approaches to self-sensing and self-reporting materials are reviewed. Examples include bruising coatings and bleeding composites based on dye-filled microcapsules, hollow fibers, and vascular networks. Force-induced changes in color, fluorescence, or luminescence are achieved by mechanochromic epoxy resins, or by mechanophores and force-responsive proteins located at the interface of glass/carbon fibers and polymers. Composites can also feel strain, stress, and damage through embedded optical and electrical sensors, such as fiber Bragg grating sensors, or by resistance measurements of dispersed carbon fibers and carbon nanotubes. Bioinspired composites with the ability to show autonomously if and where they have been damaged lead to a multitude of opportunities for aerospace, automotive, civil engineering, and wind-turbine applications. They range from safety features for the detection of barely visible impact damage, to the real-time monitoring of deformation of load-bearing components.
Assuntos
Biomimética , Fenômenos Mecânicos , Nanotubos de Carbono , PolímerosRESUMO
A modular synthesis of Donor-Acceptor Stenhouse Adduct (DASA) polymer conjugates is described. Pentafluorophenyl-ester chemistry is employed to incorporate aromatic amines into acrylate and methacrylate copolymers, which are subsequently coupled with activated furans to generate polymers bearing a range of DASA units in a modular manner. The effect of polymer glass transition temperature on switching kinetics is studied, showing dramatic rate enhancements in going from a glassy to a rubbery matrix. Moreover, tuning the DASA absorption profile allows for selective switching, as demonstrated by ternary photopatterning, with potential applications in rewriteable data storage.