Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172098, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38582124

RESUMO

Terpenoids have long been known to originate from natural sources. However, there is growing evidence for emissions from anthropogenic activities in cities, in particular from the production, manufacturing, and use of household solvents. Here, as part of the DATAbASE (Do Anthropogenic Terpenoids mAtter in AtmoSpheric chEmistry?) project, we investigate for the first time the potential role of industrial activities on the terpenoid burden in the urban atmosphere. This study is based on continuous VOC observations from an intensive field campaign conducted in July 2014 at an industrial-urban background site located in Dunkirk, Northern France. More than 80 VOCs including oxygenated and terpenoid compounds were measured by on-line Thermal Desorption Gas Chromatography with a Flame Ionization Detection (TD-GC-FID) and Proton Transfer Reaction-Time of Flight Mass Spectrometry (PTR-ToFMS). Isoprene, α-pinene, limonene and the sum of monoterpenes were the terpenoids detected at average mixing ratios of 0.02 ± 0.02 ppbv, 0.02 ± 0.02 ppbv, 0.01 ± 0.01 ppbv and 0.03 ± 0.05 ppbv, respectively. Like other anthropogenic VOCs, the mixing ratios of terpenoids significantly increase downwind the industrial plumes by one order of magnitude. Positive Matrix Factorization (PMF) was performed to identify the different emission sources of VOCs and their contribution. Six factors out of the eight factors extracted (r2 = 0.95) are related to industrial emissions such as solvent use, chemical and agrochemical storage, metallurgy, petrochemical, and coal-fired industrial activities. From the correlations between the industrial-type PMF factors, sulfur dioxide, and terpenoids, we determined their emissions ratios and we quantified for the first time their industrial emissions. The highest emission ratio is related to the alkene-dominated factor and is related to petrochemical, metallurgical and coal-fired industrial activities. The industrial emissions of monoterpenes equal 8.1 ± 4.3 tons/year. Those emissions are as significant as the non-industrialized anthropogenic ones estimated for the Paris megacity.

2.
Environ Int ; 181: 108248, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857188

RESUMO

More than 7 million early deaths/year are attributable to air pollution. Current health concerns are especially focused on air pollution-derived particulate matter (PM). Although oxidative stress-induced airway inflammation is one of the main adverse outcome pathways triggered by air pollution-derived PM, the persistence of both these underlying mechanisms, even after exposure cessation, remained poorly studied. In this study, A/JOlaHsd mice were also exposed acutely (24 h) or sub-chronically (4 weeks), with or without a recovery period (12 weeks), to two urban PM2.5 samples collected during contrasting seasons (i.e., autumn/winter, AW or spring/summer, SS). The distinct intrinsic oxidative potentials (OPs) of AW and SS PM2.5, as evaluated in acellular conditions, were closely related to their respective physicochemical characteristics and their respective ability to really generate ROS over-production in the mouse lungs. Despite the early activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) cell signaling pathway by AW and, in a lesser degree, SS PM2.5, in the murine lungs after acute and sub-chronic exposures, the critical redox homeostasis was not restored, even after the exposure cessation. Accordingly, an inflammatory response was reported through the activation of the nuclear factor-kappa B (NF-κB) cell signaling pathway activation, the secretion of cytokines, and the recruitment of inflammatory cells, in the murine lungs after the acute and sub-chronic exposures to AW and, in a lesser extent, to SS PM2.5, which persisted after the recovery period. Taken together, these original results provided, for the first time, new relevant insights that air pollution-derived PM2.5, with relatively high intrinsic OPs, induced oxidative stress and inflammation, which persisted admittedly at a lower level in the lungs after the exposure cessation, thereby contributing to the occurrence of molecular and cellular adverse events leading to the development and/or exacerbation of future chronic inflammatory lung diseases and even cancers.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Camundongos , Animais , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Pulmão , Inflamação/induzido quimicamente , Estresse Oxidativo
3.
Environ Int ; 178: 108081, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451041

RESUMO

This study analyzed the variability of equivalent black carbon (eBC) mass concentrations and their sources in urban Europe to provide insights into the use of eBC as an advanced air quality (AQ) parameter for AQ standards. This study compiled eBC mass concentration datasets covering the period between 2006 and 2022 from 50 measurement stations, including 23 urban background (UB), 18 traffic (TR), 7 suburban (SUB), and 2 regional background (RB) sites. The results highlighted the need for the harmonization of eBC measurements to allow for direct comparisons between eBC mass concentrations measured across urban Europe. The eBC mass concentrations exhibited a decreasing trend as follows: TR > UB > SUB > RB. Furthermore, a clear decreasing trend in eBC concentrations was observed in the UB sites moving from Southern to Northern Europe. The eBC mass concentrations exhibited significant spatiotemporal heterogeneity, including marked differences in eBC mass concentration and variable contributions of pollution sources to bulk eBC between different cities. Seasonal patterns in eBC concentrations were also evident, with higher winter concentrations observed in a large proportion of cities, especially at UB and SUB sites. The contribution of eBC from fossil fuel combustion, mostly traffic (eBCT) was higher than that of residential and commercial sources (eBCRC) in all European sites studied. Nevertheless, eBCRC still had a substantial contribution to total eBC mass concentrations at a majority of the sites. eBC trend analysis revealed decreasing trends for eBCT over the last decade, while eBCRC remained relatively constant or even increased slightly in some cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluição do Ar/análise , Europa (Continente) , Estações do Ano , Fuligem/análise , Carbono/análise , Material Particulado/análise
4.
Sci Total Environ ; 898: 165466, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451445

RESUMO

This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated. The result showed that the peak concentrations of LDSA at UB and TR sites are commonly observed in the morning (06:00-8:00 UTC) and late evening (19:00-22:00 UTC), coinciding with traffic rush hours, biomass burning, and atmospheric stagnation periods. The only LDSA night-time peaks are observed on weekends. Due to the variability of emission sources and meteorology, the seasonal variability of the LDSA concentration revealed significant differences (p = 0.01) between the four seasons at all monitoring sites. Meanwhile, the correlations of LDSA with other pollutant metrics suggested that Aitken and accumulation mode particles play a significant role in the total LDSA concentration. The results also indicated that the main proportion of total LDSA is attributed to the ALV fraction (50 %), followed by the TB (34 %) and HA (16 %). Overall, this study provides valuable information of LDSA as a predictor in epidemiological studies and for the first time presenting total LDSA in a variety of European urban environments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Poeira , Pulmão , Europa (Continente) , Tamanho da Partícula
5.
Environ Pollut ; 330: 121805, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172769

RESUMO

This study presents the first long-term online measurements of submicron (PM1) particles at the ATOLL (ATmospheric Observations in liLLe) platform, in northern France. The ongoing measurements using an Aerosol Chemical Speciation Monitor (ACSM) started at the end of 2016 and the analysis presented here spans through December 2020. At this site, the mean PM1 concentration is 10.6 µg m-3, dominated by organic aerosols (OA, 42.3%) and followed by nitrate (28.9%), ammonium (12.3%), sulfate (8.6%), and black carbon (BC, 8.0%). Large seasonal variations of PM1 concentrations are observed, with high concentrations during cold seasons, associated with pollution episodes (e.g. over 100 µg m-3 in January 2017). To study OA origins over this multiannual dataset we performed source apportionment analysis using rolling positive matrix factorization (PMF), yielding two primary OA factors, a traffic-related hydrocarbon-like OA (HOA) and biomass-burning OA (BBOA), and two oxygenated OA (OOA) factors. HOA showed a homogeneous contribution to OA throughout the seasons (11.8%), while BBOA varied from 8.1% (summer) to 18.5% (winter), the latter associated with residential wood combustion. The OOA factors were distinguished between their less and more oxidized fractions (LO-OOA and MO-OOA, on average contributing 32% and 42%, respectively). During winter, LO-OOA is identified as aged biomass burning, so at least half of OA is associated with wood combustion during this season. Furthermore, ammonium nitrate is also a predominant aerosol component during cold-weather pollution episodes - associated with fertilizer usage and traffic emissions. This study provides a comprehensive analysis of submicron aerosol sources at the recently established ATOLL site in northern France from multiannual observations, depicting a complex interaction between anthropogenic and natural sources, leading to different mechanisms of air quality degradation in the region across different seasons.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental , Poluição do Ar/análise , Aerossóis/análise
6.
Environ Int ; 166: 107325, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716508

RESUMO

Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013-2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30-240 min) and long-term data coverage (9-36 months), providing essential information to improve/validate air quality, health impact, and climate models.

7.
Toxics ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35448422

RESUMO

The indoor environment is usually more polluted than outdoors due to emissions of gas and particle-phase pollutants from multiple sources, leading to their accumulation on top of the infiltration of outdoor pollution. While it is widely recognized that negative health effects arise from the exposure to outdoor air pollution, exposure to indoor pollutants also needs to be well assessed since we spend most of our time (~90%) breathing indoors. Indoor concentrations of pollutants are driven by physicochemical processes and chemical transformations taking place indoors, acting as sources and/or sinks. While these basic concepts are understood, assessing the contribution of each process is still challenging. In this study, we deployed online instrumentation in an unoccupied room to test a methodology for the apportionment of indoor and outdoor pollutant sources. This method was successfully applied to the apportionment of PM1 and VOCs, however, there are limitations for reactive gases such as O3. The results showed that this unoccupied indoor environment acts as a source of VOCs and contributes 87% on OVOCs and 6% on CxHy, while it acts as a sink for particles, likely due to losses through volatilization up to 60%.

8.
J Hazard Mater ; 401: 123417, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763707

RESUMO

The electronic cigarettes (e-cigs) and more recently the heated tobacco products (HTP) provide alternatives for smokers as they are generally perceived to be less harmful than conventional cigarettes. However, it is crucial to compare the health risks of these different emergent devices, in order to determine which product should be preferred to substitute cigarette. The present study aimed to compare the composition of emissions from HTP, e-cigs and conventional cigarettes, regarding selected harmful or potentially harmful compounds, and their toxic impacts on the human bronchial epithelial BEAS-2B cells. The HTP emitted less polycyclic aromatic hydrocarbons and carbonyls than the conventional cigarette. However, amounts of these compounds in HTP aerosols were still higher than in e-cig vapours. Concordantly, HTP aerosol showed reduced cytotoxicity compared to cigarette smoke but higher than e-cig vapours. HTP and e-cig had the potential to increase oxidative stress and inflammatory response, in a manner similar to that of cigarette smoke, but after more intensive exposures. In addition, increasing e-cig power impacted levels of certain toxic compounds and related oxidative stress. This study provides important data necessary for risk assessment by demonstrating that HTP might be less harmful than tobacco cigarette but considerably more harmful than e-cig.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Aerossóis/toxicidade , Humanos , Fumaça/efeitos adversos , Nicotiana , Produtos do Tabaco/toxicidade
9.
Environ Pollut ; 270: 116078, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33243539

RESUMO

Industrial metalworking facilities emit a variety of air toxics including volatile organic compounds, polycyclic aromatic hydrocarbons (PAHs) and heavy metals. In order to investigate these emissions, a 1-month multi-instrument field campaign was undertaken at an industrial site in Grande-Synthe, Dunkirk (France), in May and June 2012. One of the main objectives of the study was to provide new information on the chemical composition of particulate matter with aerodynamic diameters smaller than 2.5 µm (PM2.5) in the vicinity of metalworking facilities. An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed to provide size-resolved chemical mixing state measurements of ambient single particles at high temporal resolution. This mixing state information was then used to apportion PM2.5 to local metalworking facilities influencing the receptor site. Periods when the site was influenced by metalworking sources were characterised by a pronounced increase in particles containing toxic metals (manganese, iron, lead) and polycyclic aromatic hydrocarbons (PAHs) with a variety of chemical mixing states. The association of specific particle classes with a nearby ferromanganese alloy manufacturing plant was confirmed through comparison with previous analysis of raw materials (ores) and chimney filter particle samples collected at the facility. Particles associated with emissions from a nearby steelworks were also identified. The contribution of local metalworking activities to PM2.5 at the receptor site for the period when the ATOFMS was deployed ranged from 1 to 65% with an average contribution of 17%, while the remaining mass was attributed to other local and regional sources. These findings demonstrate the impact of metalworking facilities on air quality downwind and provide useful single particle signatures for future source apportionment studies in communities impacted by metalworking emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , França , Tamanho da Partícula , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-30987320

RESUMO

Exposure to particulate matter (PM) is leading to various respiratory health outcomes. Compared to coarse and fine particles, less is known about the effects of chronic exposure to ultrafine particles, despite their higher number and reactivity. In the present study, we performed a time-course experiment in mice to better analyze the lung impact of atmospheric ultrafine particles, with regard to the effects induced by fine particles collected on the same site. Trace element and PAH analysis demonstrated the almost similar chemical composition of both particle fractions. Mice were exposed intranasally to FF or UFP according to acute (10, 50 or 100 µg of PM) and repeated (10 µg of PM 3 times a week during 1 or 3 months) exposure protocols. More particle-laden macrophages and even greater chronic inflammation were observed in the UFP-exposed mice lungs. Histological analyses revealed that about 50% of lung tissues were damaged in mice exposed to UFP for three months versus only 35% in FF-exposed mice. These injuries were characterized by alveolar wall thickening, macrophage infiltrations, and cystic lesions. Taken together, these results strongly motivate the update of current regulations regarding ambient PM concentrations to include UFP and limit their emission.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Material Particulado/efeitos adversos , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/patologia , Poluentes Atmosféricos/análise , Animais , Modelos Animais de Doenças , Exposição Ambiental/análise , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Material Particulado/administração & dosagem , Fatores de Tempo
11.
Sci Total Environ ; 668: 443-456, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852220

RESUMO

In a context where a significant fraction of the population lives near industrial areas, the main objectives of this study are to provide (a) new data on PM2.5 chemical compositions, heavy-metal concentrations and trace gases released by metalworking activities and (b) new information on the near-field evolution (up to about a thousand meters) of such industrial plumes in terms of particle chemical composition and size distribution. For that purpose, a one-month field campaign was performed in an industrial area near the city of Dunkirk (Northern France), combining measurements of atmospheric dynamics and physico-chemical characterization of air masses. Comparisons between several elemental ratios (mainly Mn/Fe), particle size distributions and volatile organic compound (VOC) concentrations at the stacks and at a near-field site suggest that plumes of a ferromanganese alloy plant were quickly mixed with pollutants emitted by other sources (mainly other industries, possibly traffic and sea spray), in particular a neighboring steelworks, before reaching the sampling site. This led to the emergence of secondary particles related to condensation and/or aggregation phenomena inside the plumes. Metalworking emissions were also identified as a source of new particle formation, formed through the emission of gaseous precursors and their fast transformation and condensation, over a timescale of minutes before reaching the near-field site 800 m downwind. Ultrafine particles emitted at the stacks also quickly agglomerated to form larger particles before reaching the near-field site. These results show that, even over short distances, the chemical composition and size distribution of metalworking plumes may evolve rapidly and the characteristics of particles at the boundary of an industrial area (especially in contiguous urban areas) may differ from those emitted directly at the stacks.

12.
J Phys Chem A ; 122(22): 4911-4919, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29756775

RESUMO

The adsorption properties of mineral dust toward organic molecules are poorly characterized so far. Heterogeneous processes between trace gases and mineral particles can affect the oxidative capacity of the atmosphere as well as constitute additional sources or sinks for these species. The current study investigates the adsorption efficiencies of natural dust samples collected from North and West Africa, Saudi Arabia, and Arizona desert regions toward isopropyl alcohol (IPA), a common organic pollutant released in significant amounts in the atmosphere, which is used here as a probe molecule. Experiments are performed under atmospheric pressure, room temperature 296 K, over the concentration range (0.15-615) × 1013 molecules cm-3, and in the relative humidity (RH) range (0.01-85)%. The kinetic measurements are conducted inside a U-shaped flow reactor using zero air as bath gas and a chemical ionization mass spectrometer for real-time gas-phase monitoring. Kinetic and surface parameters such as initial uptake coefficients (γ0) and adsorption equilibrium constants are measured. γ0 is found to be independent of the IPA gas-phase concentration. However, concerning RH, γ is independent up to ca. 20%, but a dramatic decrease is observed above that threshold implying a competition between water molecules and IPA after the formation of a water monolayer on the dust sample. These results are simulated using an empirical expression of the form γRH = γdry - aRH b that allows the extrapolation of the uptake coefficient under any tropospheric RH conditions. Our uptake coefficient values show a linear correlation with the elemental Al/Si and Fe/Si ratios of the natural dusts studied. This was confirmed when comparing with data on inorganic species gathered from a comprehensive literature review (no such data exist for organics). To the best of our knowledge, this work is the first to demonstrate that initial uptakes are linearly correlated with the Al/Si ratio for both organic and inorganic species.

13.
Environ Res ; 156: 148-157, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28342961

RESUMO

According to the literature, tiny amounts of transition metals in airborne fine particles (PM2.5) may induce proinflammatory cell response through reactive oxygen species production. The solubility of particle-bound metals in physiological fluids, i.e. the metal bioaccessibility is driven by factors such as the solution chemical composition, the contact time with the particles, and the solid-to-liquid phase ratio (S/L). In this work, PM2.5-bound metal bioaccessibility was assessed in various physiological-like solutions including cell culture media in order to evidence the potential impact on normal human bronchial epithelial cells (NHBE) when studying the cytotoxicity and inflammatory responses of PM2.5 towards the target bronchial compartment. Different fluids (H2O, PBS, LHC-9 culture medium, Gamble and human respiratory mucus collected from COPD patients), various S/L conditions (from 1/6000 to 1/100,000) and exposure times (6, 24 and 72h) were tested on urban PM2.5 samples. In addition, metals' total, soluble and insoluble fractions from PM2.5 in LHC-9 were deposited on NHBE cells (BEAS-2B) to measure their cytotoxicity and inflammatory potential (i.e., G6PDH activity, secretion of IL-6 and IL-8). The bioaccessibility is solution-dependent. A higher salinity or organic content may increase or inhibit the bioaccessibiliy according to the element, as observed in the complex mucus matrix. Decreasing the S/L ratio also affect the bioaccessibility depending on the solution tested while the exposure time appears less critical. The LHC-9 culture medium appears to be a good physiological proxy as it induces metal bioaccessibilities close to the mucus values and is little affected by S/L ratios or exposure time. Only the insoluble fraction can be linked to the PM2.5-induced cytotoxicity. By contrast, both soluble and insoluble fractions can be related to the secretion of cytokines. The metal bioaccessibility in LHC-9 of the total, soluble, and insoluble fractions of the PM2.5 under study did not explain alone, the cytotoxicity nor the inflammatory response observed in BEAS-2B cells. These findings confirm the urgent need to perform further toxicological studies to better evaluate the synergistic effect of both bioaccessible particle-bound metals and organic species.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição por Inalação , Metais/efeitos adversos , Material Particulado/efeitos adversos , Técnicas de Cultura de Células , Células Cultivadas , Meios de Cultura/análise , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Estações do Ano
14.
Environ Sci Technol ; 50(21): 11714-11722, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27680094

RESUMO

The adsorption of isopropanol on Gobi dust was investigated in the temperature (T) and relative humidity (RH) ranges of 273-348 K and <0.01-70%, respectively, using zero air as bath gas. The kinetic measurements were performed using a novel experimental setup combining Fourier-Transform InfraRed spectroscopy (FTIR) and selected-ion flow-tube mass spectrometry (SIFT-MS) for gas-phase monitoring. The initial uptake coefficient, γ0, of isopropanol was measured as a function of several parameters (concentration, temperature, relative humidity, dust mass). γ0 was found independent of temperature while it was inversely dependent on relative humidity according to the empirical expression: γ0 = 5.37 × 10-7/(0.77+RH0.6). Furthermore, the adsorption isotherms of isopropanol were determined and the results were simulated with the Langmuir adsorption model to obtain the partitioning constant, KLin, as a function of temperature and relative humidity according to the expressions: KLin = (1.1 ± 0.3) × 10-2 exp [(1764 ± 132)/T] and KLin = 15.75/(3.21+RH1.77). Beside the kinetics, a detailed product study was conducted under UV irradiation conditions (350-420 nm) in a photochemical reactor. Acetone, formaldehyde, acetic acid, acetaldehyde, carbon dioxide, and water were identified as gas-phase products. Besides, the surface products were extracted and analyzed employing HPLC; Hydroxyacetone, formaldehyde, acetaldehyde, acetone, and methylglyoxal were identified as surface products while the formation of several other compounds were observed but were not identified. Moreover, the photoactivation of the surface was verified employing diffuse reflectance infrared fourier transform spectroscopy (DRIFTs).


Assuntos
2-Propanol , Poeira , Acetaldeído/química , Adsorção , Temperatura
15.
J Phys Chem A ; 120(8): 1197-212, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26846169

RESUMO

The heterogeneous interaction of limonene and toluene with Saharan dusts was investigated under dark conditions, pressure of 1 atm, and temperature 293 K. The mineral dust samples were collected from six different regions along the Sahara desert, extending from Tunisia to the western Atlantic coastal areas of Morocco, and experiments were carried out with the smallest sieved fractions, that is, inferior to 100 µm. N2 sorption measurements, granulometric analysis, and X-ray fluorescence and diffraction (XRF and XRD) measurements were conducted to determine the physicochemical properties of the particles. The chemical characterization showed that dust originating from mideastern Sahara has a significantly higher SiO2 content (∼ 82%) than dust collected from the western coastal regions where the SiO2 relative abundance was ∼ 50%. A novel experimental setup combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), selected-ion flow-tube mass spectrometry (SIFT-MS), and long path transmission Fourier transform infrared spectroscopy (FTIR) allowed us to follow both the adsorbed and gas phases. The kinetic adsorption/desorption measurements were performed using purified dry air as bath gas, exposing each dust surface to 10 ppm of the selective volatile organic compound (VOC). The adsorption of limonene was independent of the SiO2 content, given the experimental uncertainties, and the coverage measurements ranged between (10 and 18) × 10(13) molecules cm(-2). Experimental results suggest that other metal oxides that could possibly influence dust acidity may enhance the adsorption of limonene. On the contrary, in the case of toluene, the adsorption capacities of the Saharan samples increased with decreasing SiO2 content; however, the coverage measurements were significantly lower than those of limonene and ranged between (2 and 12) × 10(13) molecules cm(-2). Flushing the surface with purified dry air showed that VOC desorption is not a completely reversible process at room temperature. The reversibly adsorbed fraction and the rate coefficients of desorption, kdes, depended inversely on the SiO2 relative abundance for both VOCs.

16.
J Phys Chem A ; 118(40): 9471-81, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25192150

RESUMO

The ozonolysis of submicrometer (150 nm) oleic acid (OL) particles in an aerosol flow tube has been studied for a wide range of initial ozone concentrations from 25 ppb to 1100 ppb. Both reactants were monitored, as well as the four main reaction products (nonanal, azelaic acid, nonanoic acid, and 9-oxononanoic), by gas chromatography-mass spectrometer, high resolution-time of flight-aerosol mass spectrometer, proton transfer reaction-time of flight-mass spectrometer, and ozone analyzer. The values for the initial uptake coefficients derived from each reactant decay are in the same range: γO3-0 = (1.5 ± 0.1) × 10(-3) and γOL-0 = (1.0 ± 0.2) × 10(-3). The ozone uptake coefficient is highly decreased when particles are in an advanced oxidized state (γO3-∞ = 5 × 10(-5)). Concerning reaction products, nonanal was mainly observed in the gas-phase (∼80%) with a carbon yield of ∼29%. Nonanoic, azelaic, and 9-oxonanonoic acids have been quantified in the condensed phase with carbon yields of respectively 6.6%, 5.3%, and 31.4%. The changes in chemical composition induce a slight rise in particle density, whereas the aerodynamic particle diameter increases by 10%. The initial molar quantities of ozone and OL were chosen to obtain different initial stoichiometries in order to explore conditions where either of them is the limiting reactant. Drastic changes in reactivity were observed as a function of the initial stoichiometry. In conditions where OL was the initial limiting reactant, up to a total of four molecules of O3 were lost from the gas phase, whereas only one OL molecule was consumed.

17.
J Phys Chem A ; 118(40): 9482-90, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25211148

RESUMO

The kinetics of the reactions of limonene with OH and OD radicals has been studied using a low-pressure flow tube reactor coupled with a quadrupole mass spectrometer: OH + C10H16 → products (1), OD + C10H16 → products (2). The rate constants of the title reactions were determined using four different approaches: either monitoring the kinetics of OH (OD) radicals or limonene consumption in excess of limonene or of the radicals, respectively (absolute method), and by the relative rate method using either the reaction OH (OD) + Br2 or OH (OD) + DMDS (dimethyl disulfide) as the reference one and following HOBr (DOBr) formation or DMDS and limonene consumption, respectively. As a result of the absolute and relative measurements, the overall rate coefficients, k1 = (3.0 ± 0.5) × 10(-11) exp((515 ± 50)/T) and k2 = (2.5 ± 0.6) × 10(-11) exp((575 ± 60)/T) cm(3) molecule(-1) s(-1), were determined at a pressure of 1 Torr of helium over the temperature ranges 220-360 and 233-353 K, respectively. k1 was found to be pressure independent over the range 0.5-5 Torr. There are two possible pathways for the reaction between OH (OD) and limonene: addition of the radical to one of the limonene double bonds (reactions 1a and 2a ) and abstraction of a hydrogen atom (reactions 1b and 2b ), resulting in the formation of H2O (HOD). Measurements of the HOD yield as a function of temperature led to the following branching ratio of the H atom abstraction channel: k2b/k2 = (0.07 ± 0.03) × exp((460 ± 140)/T) for T = (253-355) K.


Assuntos
Cicloexenos/química , Deutério/química , Hidrogênio/química , Radical Hidroxila/química , Terpenos/química , Brometos/química , Dissulfetos/química , Cinética , Limoneno , Pressão , Temperatura , Termodinâmica
18.
J Phys Chem A ; 116(24): 6169-79, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22268561

RESUMO

A new flow reactor has been developed to study ozonolysis reactions at ambient pressure and room temperature (297 ± 2 K). The reaction kinetics of O(3) with 4-methyl-1-pentene (4M1P), 2-methyl-2-pentene (2M2P), 2,4,4-trimethyl-1-pentene (tM1P), 2,4,4-trimethyl-2-pentene (tM2P) and α-pinene have been investigated under pseudo-first-order conditions. Absolute measurements of the rate coefficients have been carried out by recording O(3) consumption in excess of organic compound. Alkene concentrations have been determined by sampling adsorbent cartridges that were thermodesorbed and analyzed by gas-chromatography coupled to flame ionization detection. Complementary experimental data have been obtained using a 250 L Teflon smog chamber. The following ozonolysis rate coefficients can be proposed (in cm(3) molecule(-1) s(-1)): k(4M1P) = (8.23 ± 0.50) × 10(-18), k(2M2P) = (4.54 ± 0.96) × 10(-16), k(tM1P) = (1.48 ± 0.11) × 10(-17), k(tM2P) = (1.25 ± 0.10) × 10(-16), and k(α-pinene) = (1.29 ± 0.16) × 10(-16), in very good agreement with literature values. The products of tM2P ozonolysis have been investigated, and branching ratios of (21.4 ± 2.8)% and (73.9 ± 7.3)% have been determined for acetone and 2,2-dimethyl-propanal, respectively. Additionally, a new nonoxidized intermediate, 2-methyl-1-propene, has been identified and quantified. A topological SAR analysis was also performed to strengthen the consistency of the kinetic data obtained with this new flow reactor.

19.
Chemphyschem ; 11(18): 4060-8, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20960492

RESUMO

Rate coefficients k for the OH+Cl(2)O reaction are measured as a function of temperature (230-370 K) and pressure by using pulsed laser photolysis to produce OH radicals and laser-induced fluorescence to monitor their loss under pseudo-first-order conditions in OH. The reaction rate coefficient is found to be independent of pressure, within the precision of our measurements at 30-100 Torr (He) and 100 Torr (N(2)). The rate coefficients obtained at 100 Torr (He) showed a negative temperature dependence with a weak non-Arrhenius behavior. A room-temperature rate coefficient of k(1)(297 K)=(7.5±1.1)×10(-12) cm(3) molecule(-1) s(-1) is obtained, where the quoted uncertainties are 2σ and include estimated systematic errors. Theoretical methods are used to examine OH···OCl(2) and OH···ClOCl adduct formation and the potential-energy surfaces leading to the HOCl+ClO (1a) and Cl+HOOCl (1d) products in reaction (1) at the hybrid density functional UMPW1K/6-311++G(2df,p) level of theory. The OH···OCl(2) and OH···ClOCl adducts are found to have binding energies of about 0.2 kcal mol(-1). The reaction is calculated to proceed through weak pre-reactive complexes. Transition-state energies for channels (1a) and (1d) are calculated to be about 1.4 and about 3.3 kcal mol(-1) above the energy of the reactants. The results from the present study are compared with previously reported rate coefficients, and the interpretation of the possible non-Arrhenius behavior is discussed.

20.
Anal Bioanal Chem ; 397(1): 243-256, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20101503

RESUMO

An ultra-performance liquid chromatographic-atmospheric pressure chemical ionization time-of-flight mass spectrometric (UPLC-APCIToFMS) method for rapid analysis of twelve nitrated polycyclic aromatic hydrocarbons (NPAHs) and nine oxygenated polycyclic aromatic hydrocarbons (OPAHs) in particle samples has been developed. The extraction step using pressurized liquid extraction was optimized by experimental design methods and the concentrated extracts were analyzed without further clean-up. Matrix effects resulting in suppression or enhancement of the response during the ionization step were not observed. The suitability of the developed method is demonstrated by analysis of six different particle samples including standard reference materials, atmospheric particles collected by a high-volume sampler at an urban background site, and a soot sample from a burner. Results from these measurements showed clear differences between the different kinds of samples. Concentrations from reference materials are in good agreement with those from previous studies. Additionally a clear seasonal trend could be observed in atmospheric NPAH and OPAH concentrations found in real samples, with higher concentrations in winter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA