Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Med Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977267

RESUMO

Peptide-based drug discovery has surged with the development of peptide hormone-derived analogs for the treatment of diabetes and obesity. Machine learning (ML)-enabled quantitative structure-activity relationship (QSAR) approaches have shown great promise in small molecule drug discovery but have been less successful in peptide drug discovery due to limited data availability. We have developed a peptide drug discovery platform called streaMLine, enabling rigorous design, synthesis, screening, and ML-driven analysis of large peptide libraries. Using streaMLine, this study systematically explored secretin as a peptide backbone to generate potent, selective, and long-acting GLP-1R agonists with improved physicochemical properties. We synthesized and screened a total of 2688 peptides and applied ML-guided QSAR to identify multiple options for designing stable and potent GLP-1R agonists. One candidate, GUB021794, was profiled in vivo (S.C., 10 nmol/kg QD) and showed potent body weight loss in diet-induced obese mice and a half-life compatible with once-weekly dosing.

2.
PLoS One ; 19(4): e0300809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662778

RESUMO

The nuclear farnesoid X receptor (FXR), a master regulator of bile acid and metabolic homeostasis, is a key target for treatment of nonalcoholic steatohepatitis (NASH). This study compared efficacy of FXR agonists obeticholic acid (OCA) and INT-787 by liver histopathology, plasma biomarkers of liver damage, and hepatic gene expression profiles in the Amylin liver NASH (AMLN) diet-induced and biopsy-confirmed Lepob/ob mouse model of NASH. Lepob/ob mice were fed the AMLN diet for 12 weeks before liver biopsy and subsequent treatment with vehicle, OCA, or INT-787 for 8 weeks. Hepatic steatosis, inflammation, and fibrosis (liver lipids, galectin-3, and collagen 1a1 [Col1a1], respectively), as well as plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, were assessed. Hepatic gene expression was assessed in Lepob/ob mice that were fed the AMLN diet for 14 weeks then treated with vehicle, OCA, or INT-787 for 2 weeks. INT-787, which is equipotent to OCA but more hydrophilic, significantly reduced liver lipids, galectin-3, and Col1a1 compared with vehicle, and to a greater extent than OCA. INT-787 significantly reduced plasma ALT and AST levels, whereas OCA did not. INT-787 modulated a substantially greater number of genes associated with FXR signaling, lipid metabolism, and stellate cell activation relative to OCA in hepatic tissue. These findings demonstrate greater efficacy of INT-787 treatment compared with OCA in improving liver histopathology, decreasing liver enzyme levels, and enhancing gene regulation, suggesting superior clinical potential of INT-787 for the treatment of NASH and other chronic liver diseases.


Assuntos
Ácido Quenodesoxicólico , Ácido Quenodesoxicólico/análogos & derivados , Modelos Animais de Doenças , Fígado , Hepatopatia Gordurosa não Alcoólica , Receptores Citoplasmáticos e Nucleares , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/uso terapêutico , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Galectina 3/metabolismo , Galectina 3/genética
3.
PLoS One ; 17(10): e0275901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260611

RESUMO

Non-invasive biomarkers of non-alcoholic fatty liver disease (NAFLD) supporting diagnosis and monitoring disease progression are urgently needed. The present study aimed to establish a bioinformatics pipeline capable of defining and validating NAFLD biomarker candidates based on paired hepatic global gene expression and plasma bioanalysis from individuals representing different stages of histologically confirmed NAFLD (no/mild, moderate, more advanced NAFLD). Liver secretome gene signatures were generated in a patient cohort of 26 severely obese individuals with the majority having no or mild fibrosis. To this end, global gene expression changes were compared between individuals with no/mild NAFLD and moderate/advanced NAFLD with subsequent filtering for candidate gene products with liver-selective expression and secretion. Four candidate genes, including LPA (lipoprotein A), IGFBP-1 (insulin-like growth factor-binding protein 1), SERPINF2 (serpin family F member 2) and MAT1A (methionine adenosyltransferase 1A), were differentially expressed in moderate/advanced NAFLD, which was confirmed in three independent RNA sequencing datasets from large, publicly available NAFLD studies. The corresponding gene products were quantified in plasma samples but could not discriminate among different grades of NAFLD based on NAFLD activity score. Conclusion: We demonstrate a novel approach based on the liver transcriptome allowing for identification of secreted hepatic gene products as potential circulating diagnostic biomarkers of NAFLD. Using this approach in larger NAFLD patient cohorts may yield potential circulating biomarkers for NAFLD severity.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Serpinas , Somatomedinas , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Metionina Adenosiltransferase/genética , Secretoma , Serpinas/metabolismo , Biomarcadores , Somatomedinas/metabolismo , Lipoproteína(a)/metabolismo
4.
Dis Model Mech ; 14(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494644

RESUMO

The current understanding of molecular mechanisms driving diabetic kidney disease (DKD) is limited, partly due to the complex structure of the kidney. To identify genes and signalling pathways involved in the progression of DKD, we compared kidney cortical versus glomerular transcriptome profiles in uninephrectomized (UNx) db/db mouse models of early-stage (UNx only) and advanced [UNxplus adeno-associated virus-mediated renin-1 overexpression (UNx-Renin)] DKD using RNAseq. Compared to normoglycemic db/m mice, db/db UNx and db/db UNx-Renin mice showed marked changes in their kidney cortical and glomerular gene expression profiles. UNx-Renin mice displayed more marked perturbations in gene components associated with the activation of the immune system and enhanced extracellular matrix remodelling, supporting histological hallmarks of progressive DKD in this model. Single-nucleus RNAseq enabled the linking of transcriptome profiles to specific kidney cell types. In conclusion, integration of RNAseq at the cortical, glomerular and single-nucleus level provides an enhanced resolution of molecular signalling pathways associated with disease progression in preclinical models of DKD, and may thus be advantageous for identifying novel therapeutic targets in DKD.


Assuntos
Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Perfilação da Expressão Gênica , Hipertensão/complicações , Animais , Dependovirus/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Córtex Renal/metabolismo , Córtex Renal/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos Endogâmicos C57BL , Renina/metabolismo
5.
Mol Metab ; 47: 101171, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33529728

RESUMO

OBJECTIVE: The development of effective anti-obesity therapeutics relies heavily on the ability to target specific brain homeostatic and hedonic mechanisms controlling body weight. To obtain further insight into neurocircuits recruited by anti-obesity drug treatment, the present study aimed to determine whole-brain activation signatures of six different weight-lowering drug classes. METHODS: Chow-fed C57BL/6J mice (n = 8 per group) received acute treatment with lorcaserin (7 mg/kg; i.p.), rimonabant (10 mg/kg; i.p.), bromocriptine (10 mg/kg; i.p.), sibutramine (10 mg/kg; p.o.), semaglutide (0.04 mg/kg; s.c.) or setmelanotide (4 mg/kg; s.c.). Brains were sampled two hours post-dosing and whole-brain neuronal activation patterns were analysed at single-cell resolution using c-Fos immunohistochemistry and automated quantitative three-dimensional (3D) imaging. RESULTS: The whole-brain analysis comprised 308 atlas-defined mouse brain areas. To enable fast and efficient data mining, a web-based 3D imaging data viewer was developed. All weight-lowering drugs demonstrated brain-wide responses with notable similarities in c-Fos expression signatures. Overlapping c-Fos responses were detected in discrete homeostatic and non-homeostatic feeding centres located in the dorsal vagal complex and hypothalamus with concurrent activation of several limbic structures as well as the dopaminergic system. CONCLUSIONS: Whole-brain c-Fos expression signatures of various weight-lowering drug classes point to a discrete set of brain regions and neurocircuits which could represent key neuroanatomical targets for future anti-obesity therapeutics.


Assuntos
Fármacos Antiobesidade/farmacologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Peso Corporal , Ciclobutanos , Homeostase , Imageamento Tridimensional , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Obesidade/metabolismo , Obesidade/terapia , Proteínas Proto-Oncogênicas c-fos/metabolismo
6.
Scand J Gastroenterol ; 56(3): 304-311, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33602032

RESUMO

OBJECTIVES: Single nucleotide polymorphisms within the interferon lambda 4 (IFNL4) gene influence liver inflammation and fibrosis in chronic liver disease. We investigated whether this is also the case during acute liver disease, alcoholic hepatitis. We, therefore, related variants within the IFNL4 gene to the clinical course of acute alcoholic hepatitis, and characterized the activation state of the IFN lambda system in these patients. METHODS: In this pilot study, 58 patients with alcoholic hepatitis were genotyped for the rs368234815IFNL4 single nucleotide polymorphism (deltaG, deltaG/TT: IFN lambda 4 positive, TT/TT: IFN lambda 4 negative). The genotypes were related to mortality, infection and inflammation and expression of the IFNL receptor 1 and IFN inducible genes were measured in liver and peripheral leukocytes. RESULTS: Amongst the alcoholic hepatitis patients who died, the IFN negative patients live longer after diagnosis, and also the IFN negative patients tended to have an overall short-term survival benefit compared to IFN lambda positive patients (p = .058). The IFN lambda 4 negative patients at diagnosis had fewer circulating monocytes and lower plasma soluble CD163. The patients with alcoholic hepatitis had reduced expression of the IFNL receptor 1in both liver and blood compared with healthy controls. In blood, the expression of IFN stimulated genes was lower than in healthy controls and most so in the patients, who died. CONCLUSIONS: The IFN lambda 4 pathway seems involved in the acute disease processes of alcoholic hepatitis and patients without IFN lambda expression seem to have a short-term survival benefit.


Assuntos
Hepatite Alcoólica , Antivirais , Genótipo , Hepacivirus , Hepatite Alcoólica/genética , Humanos , Interferons , Interleucinas/genética , Projetos Piloto , Polimorfismo de Nucleotídeo Único
7.
J Clin Endocrinol Metab ; 106(2): e966-e981, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33135737

RESUMO

CONTEXT: The mechanisms underlying Roux-en-Y gastric bypass (RYGB) surgery-induced weight loss and the immediate postoperative beneficial metabolic effects associated with the operation remain uncertain. Enteroendocrine cell (EEC) secretory function has been proposed as a key factor in the marked metabolic benefits from RYGB surgery. OBJECTIVE: To identify novel gut-derived peptides with therapeutic potential in obesity and/or diabetes by profiling EEC-specific molecular changes in obese patients following RYGB-induced weight loss. SUBJECTS AND METHODS: Genome-wide expression analysis was performed in isolated human small intestinal EECs obtained from 20 gut-biopsied obese subjects before and after RYGB. Targets of interest were profiled for preclinical and clinical metabolic effects. RESULTS: Roux-en-Y gastric bypass consistently increased expression levels of the inverse ghrelin receptor agonist, liver-expressed antimicrobial peptide 2 (LEAP2). A secreted endogenous LEAP2 fragment (LEAP238-47) demonstrated robust insulinotropic properties, stimulating insulin release in human pancreatic islets comparable to the gut hormone glucagon-like peptide-1. LEAP238-47 showed reciprocal effects on growth hormone secretagogue receptor (GHSR) activity, suggesting that the insulinotropic action of the peptide may be directly linked to attenuation of tonic GHSR activity. The fragment was infused in healthy human individuals (n = 10), but no glucoregulatory effect was observed in the chosen dose as compared to placebo. CONCLUSIONS: Small intestinal LEAP2 expression was upregulated after RYGB. The corresponding circulating LEAP238-47 fragment demonstrated strong insulinotropic action in vitro but failed to elicit glucoregulatory effects in healthy human subjects.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , Derivação Gástrica/métodos , Trato Gastrointestinal/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade/cirurgia , Fragmentos de Peptídeos/metabolismo , Transcriptoma , Adolescente , Adulto , Peptídeos Catiônicos Antimicrobianos/genética , Biomarcadores/análise , Proteínas Sanguíneas/genética , Estudos de Casos e Controles , Estudos Cross-Over , Método Duplo-Cego , Células Enteroendócrinas/metabolismo , Células Enteroendócrinas/patologia , Feminino , Seguimentos , Humanos , Ilhotas Pancreáticas/patologia , Masculino , Obesidade/patologia , Fragmentos de Peptídeos/genética , Prognóstico , Estudos Prospectivos , Adulto Jovem
8.
Peptides ; 136: 170467, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253774

RESUMO

Roux-en-Y gastric bypass (RYGB) is the most efficient intervention in morbid obesity and promotes metabolic improvements in several peripheral tissues. However, the underlying molecular mechanisms are still poorly understood. To further understand the effects of RYGB on peripheral tissues transcriptomes, we determined transcriptome signatures in pancreatic islets, adipose and liver tissue from diet-induced obese (DIO) rats model following RYGB. Whereas RYGB led to discrete gene expression changes in pancreatic islets, substantial transcriptome changes were observed in metabolic and immune signaling pathways in adipose tissue and the liver, indicating major gene adaptive responses in fat-storing tissues. Compared to RYGB DIO rats, peripheral tissue transcriptome signatures were markedly different in caloric restricted weight matching DIO rats, implying that caloric restriction paradigms do not reflect transcriptomic regulations of RYGB induced weight loss. The present gene expression study may serve as a basis for further investigations into molecular regulatory effects in peripheral tissues following RYGB-induced weight loss.


Assuntos
Resistência à Insulina/genética , Fígado/metabolismo , Obesidade Mórbida/genética , Obesidade/genética , Transcriptoma/genética , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Derivação Gástrica , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/cirurgia , Fígado/patologia , Masculino , Obesidade/etiologia , Obesidade/patologia , Obesidade/cirurgia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Obesidade Mórbida/cirurgia , Ratos , Ratos Sprague-Dawley , Redução de Peso/genética
9.
Biomed Pharmacother ; 133: 110966, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33171401

RESUMO

The gut microbiota has been implicated in the therapeutic effects of antidiabetics. It is unclear if antidiabetics directly influences gut microbiome-host interaction. Oral peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists, such as rosiglitazone, are potent insulin sensitizers used in the treatment of type 2 diabetes (T2D). PPAR-γ is abundantly expressed in the intestine, making it possible that PPAR-γ agonists directly influences gut microbiome-host homeostasis. The presented study therefore aimed to characterize local gut microbiome and intestinal transcriptome responses in diabetic db/db mice following rosiglitazone treatment. Diabetic B6.BKS(D)-Leprdb/J (db/db) mice (8 weeks of age) received oral dosing once daily with vehicle (n = 12) or rosiglitazone (3 mg/kg, n = 12) for 8 weeks. Gut segments (duodenum, jejunum, ileum, caecum, and colon) were sampled for paired analysis of gut microbiota and host transcriptome signatures using full-length bacterial 16S rRNA sequencing and RNA sequencing (n = 5-6 per group). Treatment with rosiglitazone improved glucose homeostasis without influencing local gut microbiome composition in db/db mice. In contrast, rosiglitazone promoted marked changes in ileal and colonic gene expression signatures associated with peroxisomal and mitochondrial lipid metabolism, carbohydrate utilization and immune regulation. In conclusion, rosiglitazone treatment markedly affected transcriptional markers of intestinal lipid metabolism and immune regulation but had no effect on the gut microbiome in diabetic db/db mice.


Assuntos
Bactérias/crescimento & desenvolvimento , Diabetes Mellitus/tratamento farmacológico , Microbioma Gastrointestinal , Hipoglicemiantes/farmacologia , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Rosiglitazona/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/microbiologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Masculino , Camundongos , PPAR gama/agonistas , PPAR gama/metabolismo , Transdução de Sinais
10.
Obesity (Silver Spring) ; 28(11): 2163-2174, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33150746

RESUMO

OBJECTIVE: Changes in the secretion of gut-derived peptide hormones have been associated with the metabolic benefits of Roux-en-Y gastric bypass (RYGB) surgery. In this study, the effects of RYGB on anthropometrics, postprandial plasma hormone responses, and mRNA expression in small intestinal mucosa biopsy specimens before and after RYGB were evaluated. METHODS: In a cross-sectional study, 20 individuals with obesity undergoing RYGB underwent mixed meal tests and upper enteroscopy with retrieval of small intestinal mucosa biopsy specimens 3 months before and after surgery. Concentrations of circulating gut and pancreatic hormones during mixed meal tests as well as full mRNA sequencing of biopsy specimens were evaluated. RESULTS: RYGB-induced improvements of body weight and composition, insulin resistance, and circulating cholesterols were accompanied by significant changes in postprandial plasma responses of pancreatic and gut hormones. Global gene expression analysis of biopsy specimens identified 2,437 differentially expressed genes after RYGB, including changes in genes that encode prohormones and G protein-coupled receptors. CONCLUSIONS: RYGB affects the transcription of a wide range of genes, indicating that the observed beneficial metabolic effects of RYGB may rely on a changed expression of several genes in the gut. RYGB-induced changes in the expression of genes encoding signaling peptides and G protein-coupled receptors may disclose new gut-derived treatment targets against obesity and diabetes.


Assuntos
Derivação Gástrica/métodos , Microbioma Gastrointestinal/genética , Expressão Gênica/genética , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Clin Transl Gastroenterol ; 11(8): e00197, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32955203

RESUMO

INTRODUCTION: In alcoholic hepatitis (AH), high interleukin (IL)-22 production is associated with disease improvement, purportedly through enhanced infection resistance and liver regeneration. IL-22 binding protein (BP) binds and antagonizes IL-22 bioactivity, but data on IL-22BP in liver disease suggest a complex interplay. Despite the scarcity of human data, IL-22 is in clinical trial as treatment of AH. We, therefore, in patients with AH, described the IL-22 system focusing on IL-22BP and associations with disease course, and mechanistically pursued the human associations in vitro. METHODS: We prospectively studied 41 consecutive patients with AH at diagnosis, days 7 and 90, and followed them for up to 1 year. We measured IL-22 pathway proteins in liver biopsies and blood and investigated IL-22BP effects on IL-22 in hepatocyte cultures. RESULTS: IL-22BP was produced in the gut and was identifiable in the patients with AH' livers. Plasma IL-22BP was only 50% of controls and the IL-22/IL-22BP ratio thus elevated. Consistently, IL-22-inducible genes were upregulated in AH livers at diagnosis. Low plasma IL-22BP was closely associated with high 1-year mortality. In vitro, IL-22 stimulation reduced IL-22 receptor (R) expression, but coincubation with IL-22BP sustained IL-22R expression. In the AH livers, IL-22R mRNA expression was similar to healthy livers, although IL-22R liver protein was higher at diagnosis. DISCUSSION: Plasma IL-22BP was associated with an adverse disease course, possibly because its low level reduces IL-22R expression so that IL-22 bioactivity was reduced. This suggests the IL-BP interplay to be central in AH pathogenesis, and in future treatment trials (see Visual abstract, Supplementary Digital Content 5, http://links.lww.com/CTG/A338).


Assuntos
Hepatite Alcoólica/mortalidade , Fígado/patologia , Receptores de Interleucina/sangue , Receptores de Interleucina/metabolismo , Adulto , Biópsia , Estudos de Casos e Controles , Meios de Cultura/metabolismo , Feminino , Seguimentos , Voluntários Saudáveis , Células Hep G2 , Hepatite Alcoólica/sangue , Hepatite Alcoólica/imunologia , Hepatite Alcoólica/patologia , Hepatócitos , Humanos , Interleucinas/metabolismo , Fígado/imunologia , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Estudos Prospectivos , Proteínas Recombinantes/metabolismo , Transdução de Sinais/imunologia , Regulação para Cima , Interleucina 22
12.
BMC Gastroenterol ; 20(1): 210, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631250

RESUMO

BACKGROUND: Animal models of non-alcoholic steatohepatitis (NASH) are important tools in preclinical research and drug discovery. Gubra-Amylin NASH (GAN) diet-induced obese (DIO) mice represent a model of fibrosing NASH. The present study directly assessed the clinical translatability of the model by head-to-head comparison of liver biopsy histological and transcriptome changes in GAN DIO-NASH mouse and human NASH patients. METHODS: C57Bl/6 J mice were fed chow or the GAN diet rich in saturated fat (40%), fructose (22%) and cholesterol (2%) for ≥38 weeks. Metabolic parameters as well as plasma and liver biomarkers were assessed. Liver biopsy histology and transcriptome signatures were compared to samples from human lean individuals and patients diagnosed with NASH. RESULTS: Liver lesions in GAN DIO-NASH mice showed similar morphological characteristics compared to the NASH patient validation set, including macrosteatosis, lobular inflammation, hepatocyte ballooning degeneration and periportal/perisinusoidal fibrosis. Histomorphometric analysis indicated comparable increases in markers of hepatic lipid accumulation, inflammation and collagen deposition in GAN DIO-NASH mice and NASH patient samples. Liver biopsies from GAN DIO-NASH mice and NASH patients showed comparable dynamics in several gene expression pathways involved in NASH pathogenesis. Consistent with the clinical features of NASH, GAN DIO-NASH mice demonstrated key components of the metabolic syndrome, including obesity and impaired glucose tolerance. CONCLUSIONS: The GAN DIO-NASH mouse model demonstrates good clinical translatability with respect to the histopathological, transcriptional and metabolic aspects of the human disease, highlighting the suitability of the GAN DIO-NASH mouse model for identifying therapeutic targets and characterizing novel drug therapies for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações
13.
Sci Rep ; 10(1): 1148, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980690

RESUMO

To improve the understanding of the complex biological processes underlying the development of non-alcoholic steatohepatitis (NASH), a multi-omics approach combining bulk RNA-sequencing based transcriptomics, quantitative proteomics and single-cell RNA-sequencing was used to characterize tissue biopsies from histologically validated diet-induced obese (DIO) NASH mice compared to chow-fed controls. Bulk RNA-sequencing and proteomics showed a clear distinction between phenotypes and a good correspondence between mRNA and protein level regulations, apart from specific regulatory events discovered by each technology. Transcriptomics-based gene set enrichment analysis revealed changes associated with key clinical manifestations of NASH, including impaired lipid metabolism, increased extracellular matrix formation/remodeling and pro-inflammatory responses, whereas proteomics-based gene set enrichment analysis pinpointed metabolic pathway perturbations. Integration with single-cell RNA-sequencing data identified key regulated cell types involved in development of NASH demonstrating the cellular heterogeneity and complexity of NASH pathogenesis.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/etiologia , Proteômica/métodos , Transcriptoma , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/genética , RNA/genética , RNA/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de RNA , Análise de Célula Única , Espectrometria de Massas em Tandem
14.
Diabetes ; 69(6): 1090-1099, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31974144

RESUMO

Glucagon secretion is regulated by circulating glucose, but it has turned out that amino acids also play an important role and that hepatic amino acid metabolism and glucagon are linked in a mutual feedback cycle, the liver-α-cell axis. On the basis of this knowledge, we hypothesized that hepatic steatosis might impair glucagon's action on hepatic amino acid metabolism and lead to hyperaminoacidemia and hyperglucagonemia. We subjected 15 healthy lean and 15 obese steatotic male participants to a pancreatic clamp with somatostatin and evaluated hepatic glucose and amino acid metabolism when glucagon was at basal levels and at high physiological levels. The degree of steatosis was evaluated from liver biopsy specimens. Total RNA sequencing of liver biopsy specimens from the obese steatotic individuals revealed perturbations in the expression of genes predominantly involved in amino acid metabolism. This group was characterized by fasting hyperglucagonemia, hyperaminoacidemia, and no lowering of amino acid levels in response to high levels of glucagon. Endogenous glucose production was similar between lean and obese individuals. Our results suggest that hepatic steatosis causes resistance to the effect of glucagon on amino acid metabolism. This results in increased amino acid concentrations and increased glucagon secretion, providing a likely explanation for fatty liver-associated hyperglucagonemia.


Assuntos
Aminoácidos/sangue , Fígado Gorduroso/metabolismo , Glucagon/metabolismo , Obesidade/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminoácidos/metabolismo , Glicemia , Hormônios/farmacologia , Humanos , Hiperamonemia/sangue , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Pâncreas/efeitos dos fármacos , Somatostatina/farmacologia
15.
Genome Res ; 30(1): 127-137, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831592

RESUMO

Bone marrow-derived mesenchymal stem cells (MSCs) differentiate into osteoblasts upon stimulation by signals present in their niche. Because the global signaling cascades involved in the early phases of MSCs osteoblast (OB) differentiation are not well-defined, we used quantitative mass spectrometry to delineate changes in human MSCs proteome and phosphoproteome during the first 24 h of their OB lineage commitment. The temporal profiles of 6252 proteins and 15,059 phosphorylation sites suggested at least two distinct signaling waves: one peaking within 30 to 60 min after stimulation and a second upsurge after 24 h. In addition to providing a comprehensive view of the proteome and phosphoproteome dynamics during early MSCs differentiation, our analyses identified a key role of serine/threonine protein kinase D1 (PRKD1) in OB commitment. At the onset of OB differentiation, PRKD1 initiates activation of the pro-osteogenic transcription factor RUNX2 by triggering phosphorylation and nuclear exclusion of the histone deacetylase HDAC7.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Proteômica , Humanos , Filogenia , Proteômica/métodos
16.
Brain Res ; 1727: 146538, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31705862

RESUMO

The surging obesity epidemic calls for a deeper understanding of central nervous system (CNS) mechanisms underlying the biologically defended level of body weight. Here, we analyzed global gene expression in four hypothalamic and two brainstem nuclei involved in energy homeostatic control of body weight in diet-induced obese (DIO) and lean rats. Male Sprague-Dawley rats were offered ad libitum chow, or a two-choice diet consisting of a high palatable high sugar/fat diet and chow for 40 weeks. At termination, the hypothalamic arcuate nucleus (ARC), dorsomedial hypothalamus (DMH), paraventricular nucleus (PVN) and lateral hypothalamus area (LHA), as well as the brainstem area postrema (AP) and nucleus of the solitary tract (NTS), were isolated by laser capture microdissection (LCM) followed by mRNA sequencing. Global gene expression analyses revealed a total of 88 differentially expressed genes (DEGs) in DIO rats. Transcriptome changes were mainly observed in the DMH and NTS and associated with neuropeptide signaling and regulation of signaling transduction pathways, suggesting a key role of these brain regions in body weight regulation.


Assuntos
Núcleo Hipotalâmico Dorsomedial/metabolismo , Obesidade/genética , Núcleo Solitário/metabolismo , Transcriptoma , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Masculino , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
17.
Sci Rep ; 9(1): 16161, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695063

RESUMO

The central mechanisms underlying the marked beneficial metabolic effects of bariatric surgery are unclear. Here, we characterized global gene expression in the hypothalamic arcuate nucleus (Arc) in diet-induced obese (DIO) rats following Roux-en-Y gastric bypass (RYGB). 60 days post-RYGB, the Arc was isolated by laser-capture microdissection and global gene expression was assessed by RNA sequencing. RYGB lowered body weight and adiposity as compared to sham-operated DIO rats. Discrete transcriptome changes were observed in the Arc following RYGB, including differential expression of genes associated with inflammation and neuropeptide signaling. RYGB reduced gene expression of glial cell markers, including Gfap, Aif1 and Timp1, confirmed by a lower number of GFAP immunopositive astrocyte profiles in the Arc. Sham-operated weight-matched rats demonstrated a similar glial gene expression signature, suggesting that RYGB and dietary restriction have common effects on hypothalamic gliosis. Considering that RYGB surgery also led to increased orexigenic and decreased anorexigenic gene expression, this may signify increased hunger-associated signaling at the level of the Arc. Hence, induction of counterregulatory molecular mechanisms downstream from the Arc may play an important role in RYGB-induced weight loss.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Redutora , Derivação Gástrica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gliose/genética , Adiposidade , Animais , Astrócitos/metabolismo , Biomarcadores , Dieta Hiperlipídica , Ingestão de Alimentos , Proteína Glial Fibrilar Ácida/análise , Peptídeo 1 Semelhante ao Glucagon/sangue , Inflamação/genética , Microdissecção e Captura a Laser , Masculino , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Obesidade/etiologia , Obesidade/cirurgia , Peptídeo YY/sangue , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA , Redução de Peso
18.
Sci Rep ; 9(1): 15582, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666597

RESUMO

Enteroendocrine L-cell derived peptide hormones, notably glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2), have become important targets in the treatment of type 2 diabetes, obesity and intestinal diseases. As gut microbial imbalances and maladaptive host responses have been implicated in the pathology of obesity and diabetes, this study aimed to determine the effects of pharmacologically stimulated GLP-1 and GLP-2 receptor function on the gut microbiome composition in diet-induced obese (DIO) mice. DIO mice received treatment with a selective GLP-1 receptor agonist (liraglutide, 0.2 mg/kg, BID) or dual GLP-1/GLP-2 receptor agonist (GUB09-145, 0.04 mg/kg, BID) for 4 weeks. Both compounds suppressed caloric intake, promoted a marked weight loss, improved glucose tolerance and reduced plasma cholesterol levels. 16S rDNA sequencing and deep-sequencing shotgun metagenomics was applied for comprehensive within-subject profiling of changes in gut microbiome signatures. Compared to baseline, DIO mice assumed phylogenetically similar gut bacterial compositional changes following liraglutide and GUB09-145 treatment, characterized by discrete shifts in low-abundant species and related bacterial metabolic pathways. The microbiome alterations may potentially associate to the converging biological actions of GLP-1 and GLP-2 receptor signaling on caloric intake, glucose metabolism and lipid handling.


Assuntos
Dieta/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 2/agonistas , Obesidade/metabolismo , Obesidade/microbiologia , Animais , Liraglutida/farmacologia , Masculino , Metagenoma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico
19.
Liver Int ; 39(11): 2094-2101, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31386258

RESUMO

BACKGROUND & AIMS: We recently showed that the functional capacity for ureagenesis is deficient in non-alcoholic fatty liver disease (NAFLD) patients. The aim of this study was to assess expression of urea cycle-related genes to elucidate a possible gene regulatory basis to the functional problem. METHODS: Liver mRNA expression analyses within the gene pathway governing hepatic nitrogen conversion were performed in 20 non-diabetic, biopsy-proven NAFLD patients (8 simple steatosis; 12 non-alcoholic steatohepatitis [NASH]) and 12 obese and 14 lean healthy individuals. Sixteen NAFLD patients were included for gene expression validation. Relationship between gene expressions and functional capacity for ureagenesis was described. RESULTS: Gene expression of most urea cycle-related enzymes were downregulated in NAFLD vs both control groups; markedly so for the urea cycle flux-generating carbamoyl phosphate synthetase (CPS1) (~3.5-fold, P < .0001). In NASH, CPS1 downregulation paralleled the deficit in ureagenesis (P = .03). Additionally, expression of several genes involved in amino acid uptake and degradation, and the glucagon receptor gene, were downregulated in NAFLD. Conversely, glutamine synthetase (GS) expression increased >1.5-fold (P ≤ .03), inversely related to CPS1 expression (P = .004). CONCLUSIONS: NAFLD downregulated the expression of urea cycle-related genes. Downregulation of urea cycle flux-generating CPS1 correlated with the loss of functional capacity for ureagenesis in NASH. On gene level, these changes coincided with an increase in the major ammonia scavenging enzyme GS. The effects seemed related to a fatty liver as such rather than NASH or obesity. The findings support gene regulatory mechanisms involved in the deficient ureagenesis of NAFLD, but it remains unexplained how hepatocyte fat accumulation exerts these effects.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/genética , Regulação Enzimológica da Expressão Gênica , Hepatopatia Gordurosa não Alcoólica/genética , Ureia/metabolismo , Adulto , Amônia/metabolismo , Estudos de Casos e Controles , Feminino , Glutamato-Amônia Ligase/genética , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/metabolismo , Transcriptoma
20.
Peptides ; 118: 170100, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31212005

RESUMO

OBJECTIVE: Roux-en-Y gastric bypass (RYGB) leads to rapid remission of type 2 diabetes (T2D) and sustained body weight loss, but the underlying molecular mechanisms are still not fully understood. To further elucidate these mechanisms and identify potentially novel preprohormone encoding genes with anti-diabetic and/or anti-obesity properties, we performed a comprehensive analysis of gene expression changes in enteroendocrine cells after RYGB in diet-induced obese (DIO) rats. METHODS: The mRNA expression profiles of enteroendocrine cell enriched samples were characterized at 9, 22 and 60 days after RYGB surgery in a DIO rat model. Enteroendocrine cells were identified by chromogranin A immunohistochemistry and isolated by laser capture microdissection (LCM) from five regions covering the full rostro-caudal extension of the gastrointestinal (GI) tract. RNA sequencing and bioinformatic analyses were subsequently applied to identify differentially expressed preprohormone encoding genes. RESULTS: From the analysis of enteroendocrine cell mRNA expression profiles, a total of 54 preprohormones encoding genes were found to be differentially regulated at one or more time-points following RYGB. These included well-known RYGB associated preprohormone genes (e.g. Gcg, Cck, Gip, Pyy and Sct) and less characterized genes with putative metabolic effects (e.g. Nmu, Guca2a, Guca2b, Npw and Adm), but also 16 predicted novel preprohormone genes. Among the list of gene transcripts, Npw, Apln and Fam3d were further validated using in situ mRNA hybridization and corresponding peptides were characterized for acute effects on food intake and glucose tolerance in mice. CONCLUSION: We present a comprehensive mRNA expression profile of chromogranin A positive enteroendocrine cells following RYGB in rats. The data provides a region-specific characterization of all regulated preprohormone encoding genes in the rat GI tract including 16 not hitherto known. The comprehensive catalogue of preprohormone expression changes may support our understanding of hormone mediated effects of RYGB on diabetes remission and body weight reduction.


Assuntos
Células Enteroendócrinas/metabolismo , Derivação Gástrica , Obesidade/genética , Obesidade/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Animais , Colecistocinina/genética , Colecistocinina/metabolismo , Biologia Computacional , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Microdissecção e Captura a Laser , Masculino , Camundongos , Obesidade/cirurgia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA , Somatostatina/genética , Somatostatina/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA