Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 6(9): 1578-1586, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999933

RESUMO

Cowlesite, ideally Ca6Al12Si18O60·36H2O, is to date the only natural zeolite whose structure could not be determined by X-ray methods. In this paper, we present the ab initio structure determination of this mineral obtained by three-dimensional (3D) electron diffraction data collected from single-crystal domains of a few hundreds of nanometers. The structure of cowlesite consists of an alternation of rigid zeolitic layers and low-density interlayers supported by water and cations. This makes cowlesite the only two-dimensional (2D) zeolite known in nature. When cowlesite gets in contact with a transmission electron microscope vacuum, a phase transition to a conventional 3D zeolite framework occurs in few seconds. The original cowlesite structure could be preserved only by adopting a cryo-plunging sample preparation protocol usually employed for macromolecular samples. Such a protocol allows the investigation by 3D electron diffraction of very hydrated and very beam-sensitive inorganic materials, which were previously considered intractable by transmission electron microscopy crystallographic methods.

2.
Small ; 14(49): e1803027, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30294862

RESUMO

Magnetic shape memory materials hold a great promise for next-generation actuation devices and systems for energy conversion, thanks to the intimate coupling between structure and magnetism in their martensitic phase. Here novel magnetic shape memory free-standing nanodisks are proposed, proving that the lack of the substrate constrains enables the exploitation of new microstructure-controlled actuation mechanisms by the combined application of different stimuli-i.e., temperature and magnetic field. The results show that a reversible areal strain (up to 5.5%) can be achieved and tuned in intensity and sign (i.e., areal contraction or expansion) by the application of a magnetic field. The mechanisms at the basis of the actuation are investigated by experiments performed at different length scales and directly visualized by several electron microscopy techniques, including electron holography, showing that thermo/magnetomechanical properties can be optimized by engineering the martensitic microstructure through epitaxial growth and lateral confinement. These findings represent a step forward toward the development of a new class of temperature-field controlled nanoactuators and smart nanomaterials.

3.
Inorg Chem ; 55(9): 4381-90, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27078522

RESUMO

The physical characterization and the extended crystallographic study of the double perovskite system Pb2Mn0.6Co0.4WO6 indicate an improper ferroelectric contribution to the polarization induced by the magnetic ordering. In the paramagnetic phase, the compound displays a centrosymmetric orthorhombic double perovskite structure with the Pmcn1' symmetry. The structure is strongly distorted by the lead stereoactivity. Magnetization measurements show two magnetic transitions at 188 and 9 K, but the time-of-flight neutron diffraction data provide evidence for a long-range magnetic ordering only below the second transition. Quantitative structure refinements combined with a comprehensive symmetry analysis indicate the Pm'c21' magnetic space group to be the adequate symmetry to describe the structural distortions and spin ordering in the ground state of the system. The symmetry implies a coexistence of a spontaneous ferromagnetic moment and a ferroelectric polarization along the orthogonal b- and c-axes, respectively, in the long-range ordered structure. Macroscopic measurements confirm the presence of the spontaneous polarization also below the first transition at 188 K, where only short-range magnetic correlations are evidenced by diffuse scattering in neutron diffraction.

4.
Inorg Chem ; 53(19): 10283-90, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25197959

RESUMO

In this paper we describe the new ferri-electric compound Pb2MnWO6 (PMW), a double perovskite that can be considered as a novel structural prototype showing complex nuclear structure and interesting electric properties. According to single-crystal synchrotron data, PMW crystallizes in the noncentrosymmetric polar group Pmc21, in which the two symmetry-independent lead atoms give rise to a ferrielectric arrangement. The accurate crystallographic characterization indicates the presence of a complex distortion of the perovskite lattice driven by the local instability induced by the 6s(2) lone pair of the lead atoms. These peculiar structural features are confirmed by the complete electrical characterization of the system. Dielectric and transport measurements indicate an insulating character of the sample, while pyroelectric measurements point out a ferrielectric state characterized by different contributions. The magnetic transition at 45 K is accompanied by a magnetostrictive effect indicating a probable spin-lattice coupling. The characterizations carried out on PMW, showing the evidence of a coexistence of antiferromagnetism and ferrielectricity at low temperature, could lead to the definition of a new class of multiferroic materials.

5.
Inorg Chem ; 53(16): 8749-54, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25079764

RESUMO

The structural behavior of BiMnO3 under pressure was studied in a quantitative way by single-crystal synchrotron X-ray diffraction up to 36 GPa. Two phase transitions were observed at moderate pressures (1 and 6 GPa, respectively), leading the system at first to the P21/c and then to the Pnma symmetry. The breaking of C-centering in the first transition does not affect significantly Jahn-Teller (JT) distortion and orbital order (OO) but determines a significant change in the cooperative tilting of the MnO6 octahedra. The second transition increases the symmetry to orthorhombic, leading to a Pnma structure similar to the O' structure of LaMnO3, characterized by a > c > b/√2. No symmetry change was observed above 7.1 GPa, but the different compressibility of the lattice parameters (in particular, the b axis) leads at first to a pseudocubic phase (≈30 GPa) and then to different parameter ratios (b/√2 > c > a). Even if the JT distortion is continuously reduced with increasing pressure, it is retained, together with the resulting OO, until the highest measured pressure, pointing out the relevant role of the distortion induced by the Bi(3+) lone pair in stabilizing the JT distortion.

6.
Inorg Chem ; 52(21): 12599-604, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24127732

RESUMO

The synthesis and structural and magnetic characterizations of K3Fe6F19, a new iron potassium fluoride with a complex tungsten bronze related structure, are presented. This phase was found during the investigation of relatively low-temperature (600 °C) synthesis conditions of classical tetragonal tungsten bronze (TTB) fluorides and can be considered an intermediate that forms at this temperature owing to faster crystallization kinetics. The K3Fe6F19 compound has an orthorhombic structure (space group Cmcm (63), a = 7.6975(3) Å, b = 18.2843(7) Å, c = 22.0603(9) Å) related to the TTB one, where the perovskite cage is substituted by a large S-shaped channel simultaneously occupied by two potassium atoms. The magnetic structure, characterized by magnetization measurements on an oriented single crystal and powder neutron diffraction, is dominated by the presence of interconnected double stripes of antiferromagnetic triangular exchange interaction patterns alternately rotated in clock- and anticlockwise fashion. The magnetic order takes place in a wide temperature range, by increasing progressively the interaction dimensionality.

7.
Org Biomol Chem ; 1(21): 3768-71, 2003 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-14649908

RESUMO

N,N-Dimethyl-p-nitrosoaniline reacts with benzoyl chloride affording a complex salt containing a cation, a hybrid between a nitrenium ion and an iminium ion. The salt reacts with nucleophiles (indoles, indolizines) yielding compounds characterized by a new carbon-nitrogen bond, derived from the nitrenium ion form. According to the type of nucleophile, the reaction, to differing extents, is in competition with an electron transfer process which leads to the formation of the dimer of the nucleophile and of the azoxy corresponding to the N,N-dimethyl-p-nitrosoaniline. In one of the reactions studied, a chlorinated azoxy derivative was also isolated, and its structure was elucidated by X-ray analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA